ROV KIEL 6000

Specifcations & Logistics | Cruise Schedule & Statistics & Publications | ROV-Team | Image Gallery

Cruise Schedule | Statistics | Publications

 

Publications (mostly peer-reviewed) to which ROV KIEL 6000 could contribute

 

  1. Adam, N. and Perner, M. (2018): Novel hydrogenases from deep-sea hydrothermal vent metagenomes identified by a recently developed activity-based screen. ISME Journal 12: 1225-1236. [https://doi.org/10.1038/s41396-017-0040-6] => M78/2
  2. Ahyong, S.T. (2014): Deep-sea squat lobsters of the Munidopsis serricronis complex in the Indo-West Pacific, with description of six new species (Crustacea: Decapoda: Munidopsidae). Records of the Australian Museum 66 (3): 197-216. [http://dx.doi.org/10.3853/j.2201-4349.66.2014.1630]
  3. Amon, D.J., Copley, J.T., Dahlgren, T.G., Horton, T., Kemp, K.M., Rogers, A.D. and Glover, A G. (2017): Observations of fauna attending wood and bone deployments from two seamounts on the Southwest Indian Ridge. Deep Sea Research II 136: 122-132. [http://dx.doi.org/10.1016/j.dsr2.2015.07.003] => JC066
  4. Amon, D.J, Hilário, A., Martínez Arbizu, P. and Smith, C.R. (2017): Observations of organic falls from the abyssal Clarion-Clipperton Zone in the tropical eastern Pacific Ocean. Marine Biodiversity 47: 311-321. [http://dx.doi.org/10.1007/s12526-016-0572-4] => SO239
  5. Anderson, M.O., Hannington, M.D., Haase, K., Schwarz-Schampera, U. and McConachy, T.F. (2015): Geological control on hydrothermal venting at the Nifonea Volcano, Vate Trough, Vanuatu. Mineral resources in a sustainable world. 13th Bienneal meeting SGA: 1215–1218. [doi?] => SO229
  6. Anderson, M.O., Hannington, M.D., Haase, K., Schwarz-Schampera, U., Augustin, N., McConachy, T.F. and Allen, K. (2016): Tectonic focusing of voluminous basaltic eruptions in magma-deficient backarc rifts. Earth and Planetary Science Letters 440: 43-55. [http://dx.doi.org/10.1016/j.epsl.2016.02.002] => SO229
  7. Baeye, M., Purkani, K., de Stigter, J., Gillard, B., Fettweis, M. and Greinert, J. (2022): Tidally Driven Dispersion of a Deep-Sea Sediment Plume Originating from Seafloor Disturbance in the DISCOL Area (SE-Pacific Ocean). geosciences 12: 8. [https://doi.org/10.3390/geosciences12010008] => SO242-2
  8. Bau, M., Balan, S., Schmidt, K. and Koschinsky, A. (2010): Rare earth elements in mussel shells of the Mytilidae family as tracers for hidden and fossil high-temperature hydrothermal systems. Earth and Planetary Science Letters 299: 310-316. [http://dx.doi.org/10.1016/j.epsl.2010.09.011] => ATA-2, M78/2
  9. Beier, C., Brandl, P. A., Lima, S. M. and Haase, K. M. (2018): Tectonic control on the genesis of magmas in the New Hebrides arc (Vanuatu). Lithos 312-313: 290-307. [http://dx.doi.org/10.1016/j.lithos.2018.05.011] =>  SO229
  10. Böhnke, S. and Perner, M. (2015): A function-based screen for seeking RubisCO active clones from metagenomes: novel enzymes influencing RubisCO activity. ISME Journal 9 (3): 735-745. [http://dx.doi.org/10.1038/ismej.2014.163] => M78/2
  11. Böhnke, S. and Perner, M. (2019): Seeking active RubisCO from the currently uncultured microbial majority colonizing deep-sea hydrothermal vent environments. The ISME Journal 13: 2475-2488. [https://doi.org/10.1038/s41396-019-0439-3]
  12. Boetius, A. and Haeckel, M. (2018): Mind the seafloor. Research and regulations must be integrated to protect seafloor biota from future mining impacts. Science 359 (6371): 343-36. [no doi] => SO239, SO242-2
  13. Bonifácio, P.  and Menot, L. (2019): New genera and species from the Equatorial Pacific provide phylogenetic insights into deep-sea Polynoidae (Annelida). Zoologial Journal of the Linnean Society 185: 555-635. [https://doi.org/10.1093/zoolinnean/zly063] => SO239
  14. Bonifácio, P., Neal, L. and Menot, L. (2021): Diversity of Deep-Sea Scale-Worms (Annelida, Polynoidae) in the Clarion-Clipperton Fracture Zone. Frontiers in Marine Science 8: 656899. [http://dx.doi.org/10.3389/fmars.2021.656899] => SO239
  15. Breusing, C., Biastoch, A., Drews, A., Metaxas, A., Jollivet, D., Vrijenhoek, R.C., Bayer, T., Melzner, F., Sayavedra, L., Petersen, J.M., Dubilier, N., Schilhabel, M.B., Philip Rosenstiel, P. and Reusch, T. B.H. (2016): Biophysical and Population Genetic Models Predict the Presence of “Phantom” Stepping Stones Connecting Mid-Atlantic Ridge Vent Ecosystems. Current Biology 26: 2257-2267. [http://dx.doi.org/10.1016/j.cub.2016.06.062] => ATA-2, M78-2
  16. Brix, S., Kaiser, S., Lörz, A.-N., Lea Saout, M., Schumacher, M., Bonk, F., Egilsdottir, H., Olafsdottir, S.H., Tandberg, A.H.S., Taylor, J., Tewes, S., Xavier, J.R. and Linse K. (2022): Habitat variability and faunal zonation at the Ægir Ridge, a canyon-like Structure in the deep Norwegian Sea. PeerJ 10: e13394 [http://dx.doi.org/10.7717/peerj.13394] => SO276
  17. Brown, A., Wright, R., Mevenkamp, L. and Hauton, C. (2017): A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses. Aquatic Toxicology 191: 10-16. [http://dx.doi.org/10.1016/j.aquatox.2017.06.028] => SO242-2
  18. Brown, A., Hauton, C., Stratmann, T., Sweetman, A., van Oevelen, D. and Jones, D.O.B. (2018): Metabolic rates are significantly lower in abyssal Holothuroidea than in shall-water Holothuroidea. Royal Society open science 5: 172162. [http://dx.doi.org/10.1098/rsos.172162]  => SO242-2
  19. Busch, K., Slaby, B.M., Bach, W., Boetius, A., Clefsen, I., Colaço, A., Creemers, M., Cristobo, J., Federwisch, L., Franke, A., Gavriilidou, A., Hethke, A., Kenchington, E., Mienis, F., Mills, S., Riesgo, A., Ríos, P., Roberts, E.M., Sipkema, D., Pita, L., Schupp, P.J., Xavier, J., Rapp, H.T. and Hentschel, U. (2022):  Biodiversity, environmental drivers, and sustainability of the global deep-sea sponge microbiome. Nature Communications 13: 5160. [https://doi.org/10.1038/s41467-022-32684-4] => SO254
  20. Cairns, S.D. and Taylor, M.L. (2019): An illustrated key to the species of genus Narella (Cnidaria, Octocorallia, Primnoidae). ZooKeys 822: 1-15. [http://dx.doi.org/10.3897 /zookeys.822.29922] => JC066
  21. Chen, C., Copley, J., Linse, K., Rogers, A.D. and Sigwart, J. (2015a): How the mollusc got its scales: convergent evolution of the molluscan scleritome. Biological Journal of the Linnean Society 114: 949-954. [http://dx.doi.org/10.1111/bij.12462] => JC067
  22. Chen, C., Linse, K., Copley, J.T., Rogers, A.D. (2015b): The ‘scaly-foot gastropod’: a new genus and species of hydrothermal vent-endemic gastropod (Neomphalina: Peltospiridae) from the Indian Ocean. Journal of Molluscan Studies 81: 322-334. [http://dx.doi.org/10.1093/mollus/eyv013] => JC067
  23. Chen, C., Copley, J.T., Linse, K., Rogers, A.D., Sigwart, J.D. (2015c): The heart of a dragon: 3D anatomical reconstruction of the ‘scaly-foot gastropod’ (Mollusca: Gastropoda: Neomphalina) reveals its extraordinary circulatory system. Frontiers in Zoology 12: 16pp. [http://dx.doi.org/10.1186/s12983-015-0105-1] => JC067
  24. Chen, C, Copley, J., Linse, K., Rogers, A.D. (2015d): Low connectivity between ‘scaly-foot gastropod’ (Mollusca: Peltospiridae) populations at hydrothermal vents on the Southwest Indian Ridge and the Central Indian Ridge. Org Divers Evol (2015) 15: 663-670. [http://dx.doi.org/10.1007/s13127-015-0224-8]  è JC067
  25. Chen, C., Linse, K., Roterman, C.N., Copley, J.T. and Rogers, A.D. (2015e): A new genus of large hydrothermal vent-endemic gasatropod (Neomphalina: Peltospiridae). Zoological Journal of the Linnean Society 175: 319-335. [http://dx.doi.org/10.1111/zoj.12279] => JC067
  26. Chen, C., Zhou, Y., Wang, C. and Copley, J.T. (2017): Two New Hot-Vent Peltospirid Snails (Gastropoda: Neomphalina) from Longqi Hydrothermal Field, Southwest Indian Ridge. Frontierts in Marine Science 4: 392. [http://dx.doi.org/10.3389/fmars.2017.00392] => JC067
  27. Christodoulou, M., O’Hara, R.D., Hugall, A.F. and Martínez Arbizu, P. (2019): Dark Ophiuroid Biodiversity in a Prospective Abyssal Mine Field. Current Biology 29 (22): 3909-3912. [https://doi.org/10.1016/j.cub.2019.09.012]  => SO239/ SO242-2
  28. Christodoulou, M., O’Hara, T., Hugall, A.F., Khodami, S., Rodrigues, C.F., Hilário, A., Vink, A and Martínez Arbizu, P. (2020): Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation. Biogeociences 17: 1845-1876. [https://doi.org/10.5194/bg-17-1845-2020] => SO239/ SO242-2
  29. Christodoulou, M., De Grave, S., Vink., A. and Martínez Arbizu, P. (2022): Taxonomic assessment of deep-sea decapod crustaceans collected from poly metallic nodule field of the East Pacific Ocean using an integrative approach. Marine Biodiversity 52: 61. [https://doi.org/10.1007/s12526-022-01284-2] => SO239, SO242-2, SO268
  30. Cole, C., Coelho, A.V., James, R.H., Connelly, D. and Sheehan, D. (2014): Proteomic responses to metal-induced oxidative stress in hydrothermal vent-living mussels, Bathymodiolus sp., on the Southwest Indian Ridge. Marine Environmental Research 96: 29-37. [http://dx.doi.org/10.1016/j.marenvres.2013.09.003] => JC67
  31. Copley, J.T., Marsh, L., Glover, A.G., Hühnerbach, V., Nye, V.E., Reid, W.D.K., Sweeting, C.J., Wigham, B.D.and Wiklund, H. (2016): Ecology and biogeography of megafauna and macrofauna at the first known deep-sea hydrothermal vents on the ultraslow-spreading Southwest Indian Ridge. Scientific Reports 6: 39158. [http://dx.doi.org/10.1038/srep39158] => JC67
  32. Cuvelier, D., Ribeiro, P.A., Ramalho, S.P., Kersken, D., Martínez Arbizu, P. and Colaçao, A. (2020): Are seamounts refuge areas for fauna from polymetallic nodule fields? Biogeosciences 17: 2657-2680. [https://doi.org/10.5194/bg-17-2657-2020] => SO239
  33. Cuvelier, D., Ramalho, S.P., Purser, A. and Haeckel, M. (2022): Impact of returning scientific cruises and prolonged on-site presence on litter abundance at the deep-sea nodule field in the Peru Basin. Marin Pollution Bulletin 184: 114162. [https://doi.org/10.1016/j.marpolbul.2022.114162] => SO242-2
  34. Decelle, J., Andersen, A.C. and Hourdez, S. (2010): Morphological adaptations to chronic hypoxia in deep-sea decapod crustaceans from hydrothermal vents and cold seep. Marine Biology 157: 1259-1269. [http://dx.doi.org/10.1007/s00227-010-1406-8] => ATA1 und/oder MSM10-3 und/oder M78-2
  35. de Jonge, D.S.W., Stratmann, T., Lins, L., Vanreusel, A., Purser, A., Marcon, Y., Rodrigues, C.F., Ravara, A., Esquete, P, Cunha, M.R., Simon-Lledó, E., van Breugel, P., Sweetman, A.K., Sotaert, K. and van Oevelen, D. (2020): Abyssal food-web model indicates faunal carbon low recovery and impaired microbial loop 26 years after a sediment disturbance experiment. Progress in Oceanography 189: 102444. [https://doi.org/10.1016/j.pocean.2020.102446]  => SO242-2
  36. Dekov, V.M., Petersen, S., Garbe-Schönberg, D., Kamenov, G.D., Perner, M., Kuzmann, E. and Schmidt, M. (2010): Fe–Si-oxyhydroxide deposits at a slow-spreading centre with thickened oceanic crust: The Lilliput hydrothermal field (9°33′S, Mid-Atlantic Ridge). Chemical Geology 278: 186–200. [http://dx.doi.org/10.1016/j.chemgeo.2010.09.012] => M78/2
  37. Devey, C., Greinert, J., Boetius, A., Augustin, N. and Yeo, I. (2021): How volcanically active is an abyssal plain? Evidence for recent volcanism on 20 Ma Nazca Plate seafloor. Marine Geology 440: 106548. [https://doi.org/10.1016/j.margeo.2021.106548] => SO242-2
  38. Dürkefälden, A., Hoernle, K., Hauff, F., Wartho, J.A., van den Bogaard, P. and Werner, R. (2019): Age and geochemistry of the Beata Ridge: Primary formation during the main phase (~89 Ma) of the Caribbean large Igneous Province. Lithos 328-329: 69-87. [https://doi.org/10.1016/j.lithos.2018.12.021] => M81-2
  39. Dumke, I., Purser, A., Marcon, Y., Nornes, S.M., Johnsen, G., Ludvigsen, M. and Söreide, F. (2018): Underwater hyperspectral imaging as an in situ taxonomic tool for deep-sea megafauna. Nature Scientific Reports 8: 12860. [http://dx.doi.org/10.1038/s41598-018-31261-4] => SO242-2
  40. Dumke, I., Nornes, S.M., Purser, A., Marcon Y., Ludvigsen, M., Ellefmo, S.L., Johnsen, G. and Söreide, F. (2018b): First hyperspectral imaging survey of the deep seafloor: high-resolution mapping of manganese nodules. Remote sensing of the Environment 209: 19-30. [https://doi.org/10.1016/j.rse.2018.02.024] => SO242-2
  41. Dworschak, P.C. (2016): A new genus and species of axiid shrimp (Crustacea, Decapoda) from a southwestern Indian Ocean seamount. European Journal of Taxonomy 229: 1-11. [http://dx.doi.org/10.5852/ejt.2016.229] => JC066
  42. Eizaguirre, C. (2016): Evolution: Ocean Models Reveal Life in Deep Seas. Current Biology Dispatches 26: R853-R855. [http://dx.doi.org/10.1016/j.cub.2016.07.083] => M78/2
  43. Fredslund, F., Borchert, M.S., Poulsen, J.-C., N, Perner, M., Streit, W. and Leggio, L.L. (2018): Structure of a hyperthermostable carbonic anhydrase identified from an active hydrothermal vent chimney. Enzyme and Microbial Technology: 114: 48-56. [https://doi.org/10.1016/j.enzmictec.2018.03.009] => MSM10/3  
  44. Gausepohl, F., Hennke, A., Schoening, T., Köser, K. and Greinert J. (2020): Scars in the abyss: reconstructing sequence, location and temporal chance of the 78 plough tracks of the 1989 DISCOL deep-sea disturbance experiment in the Peru Basin. Biogeosciences 17: 1463-1493. [https://doi.org/10.5194/bg-17-1463-2020] => SO239 / SO242-2
  45. Geersen, J., Scholz, F., Linke, P., Schmidt, M., Lange, D., Behrmann, J.H., Völker, D. and Hensen, C. (2016): Fault zone controlled seafloor methane seepage in the rupture area of the 2010 Maule Earthquake, Central Chile. Geochemistry, Geophysics, Geosystems 17: 4802-4813. [http://dx.doi.org/10.1002/2016GC006498] => SO210
  46. Gerdes, K.H., Martínez Arbizu, P., Schwentner, M., Freitag, R., Schwarz-Schampera, U., Brandt, A. and Kihara, T.C. (2019): Megabenthic assemblages at the southern Central Indian Ridge – Spatial segregation of inactive hydrothermal vents from active -, periphery- and non-vent sites. Marine Environmental Research 151: 104776. [https://doi.org/10.1016/j.marenvres.2019.104776] => INDEX2013
  47. Gerdes, K.H., Kihara, T.C., Martínez Arbizu, P., Kuhn, T., Schwarz-Schampera, U., Mah, C.L., Norenburg, J.L., Linley, T.D., Shalaeva, K., Macpherson, E., Gordon, D., Stöhr, S., Messing, C.G., Bober, S., Guggolz, T., Christoudoulou, M., Gebruk, A., Kremenetskaia, A., Kroh, A., Sanamyan, K., Bolstad, K., Hoffmann, L., Gooday, A.J. and Molodtsova, T. (2021): Megafauna of the German exploration licence area for seafloor massive sulphides along the Central and South East Indian Ridge (Indian Ocean). Biodiversity Data Journal 9: e69955. [http://dx.doi.org/10.3897/BDJ.9.e69955] => INDEX2013
  48. Gollner, S., Stuckes, H. Kihara, T.C., Laurent, S., Kodami, S. and Martínez Arbizu, P. (2016): Mitochondrial DNA Analyses Indicate High Diversity, Expansive Population Growth and High Genetic Connectivity of Vent Copepods (Didivultidae) across Different Oceans. PLoS ONE 11(10): e0163776. [http://dx.doi.org/10.1371/journal.pone.0163776] => INDEX 2013
  49. Gollner, S., Kaiser, S., Menzel, L., Jones, D.O.B., Brown, A., Mestre, N.C., van Oevelen, D., Menot, L., Colaço, A., Canals, M., Cuvelier, D., Durden, J.M., Gebruk, N., Egho, G.A., Haeckel, M., Marcon, Y., Mevenkamp, L., Morato, T., Pham, C.K., Purser, A., Sanchez-Vidal, A., Vanreusel, A., Vink, A., Martínez Arbizu, P. (2017): Resilience of benthic deep-sea fauna to mining activities. Marine Environmental Research 129: 76-101. [http://dx.doi.org/10.1016/j.marenvres.2017.04.010] => INDEX 2013, SO239
  50. Gollner, S., Haeckel, M., Janssen, F., Lefaible, N., Molari, M., Papadopoulou, S., Reichard, G.-J., Trabucho-Alexandre, J., Vink, A. and Vanreusel, A. (2021): Restoration experiments in polymetallic nodule areas. Integrated Environmental Assessment and Management XX: 1-15. [http://dx.doi.org/10.1002/ieam.4541] => SO268
  51. Golowin, R, Portnyagin, M., Hoernle, K., Hauff, F., Werner, R. and Garbe-Schönberg, D. (2018): Geochemistry of deep Manihiki Plateau Crust: Implications of compositional diversity of large igneous provinces in the Western Pacific and their genetic link. Chemical Geology 493: 553-566. [https://doi.org/10.1016/j.chemgeo.2018.07.016] => SO225
  52. Gonnella, G., Böhnke, S., Indenbirken, D., Garbe-Schönberg, D., Seifert, R., Mertens, C. Kurtz, S. and Perner, M. (2016): Endemic hydrothermal vent species identified in the open ocean seed bank. Nature Microbiology 1: 1-7. [http://dx.doi.org/10.1038/NMICROBIOL.2016.86] => M78/2, ATA-1
  53. Haalboom, S., Schoening, T., Urban, P., Gasiz, I.-Z., de Stigter, H., Gillard, B., Baeye, M., Hollstein, M., Purkiani, K., Reichard, G.-J., Thomsen, L., Haeckel, M., Vink, A. and Greinert, J. (2022): Monitoring of Anthopogenic Sediment Plumes in the Clarion-Clipperton Zone, NE Equatorial Pacific Ocean. Frontiers in Marine Science 9: 882155. [https://doi.org/10.3389/fmars.2022.882155] => SO268
  54. Haase, K.M., Koschinsky, A., Petersen, S., Devey, C.W., German, C., Lackschewitz, K.S., Melchert, M., Seifert, R., Borowski, C., Giere, O. and Paulick. H. (2009): Diking, young volcamism and diffuse hydrothermal activity on the southern Mid-Atlantic Ridge: The Lilliput field at 9°33’S. Marine Geology 266: 52-64. [http://dx.doi.org/10.1016/j.margeo.2009.07.012] => M78/2
  55. Haase, K.M., Gress, M.U., Lima, S.M., Regelous, M., Beier, C., Romer, R.L., and Bellon, H. (2020). Evolution of magmatism in the New Hebrides Island Arc and in initial back-arc rifting, SW Pacific. Geochemistry, Geophysics, Geosystems 21: e2020GC008946. [https://doi.org/10.1029/2020GC008946] => SO229
  56. Haffert, L., Haeckel, M., de Stigter, H. and Jannsen, F. (2020): Assessing the temporal scale of deep-sea mining impacts on sediment biogeochemistry. Biogeosciences 17: 2767-2789. [https://doi.org/10.5194/bg-17-2767-2020] => SO242-2
  57. Hansen, M. and Perner, M. (2015): A novel hydrogen oxidizer amidst the sulfur-oxidizing Thiomicrospira lineage. The ISME Journal 9: 696-707. [http://dx.doi.org/10.1038/ismej.2014.173] => M78/2
  58. Herrera, S., Watanabe, H. and Shank, T.M. (2015): Evolutionary and biogeographical patterns of barnacles from deep-sea hydrothermal vents. Evolutionary Ecology 24: 673-689. [http://dx.doi.org/10.1111/mec.13054] => JC067
  59. Hestetun, J.T., Rapp, H.T. AND Yavier, J. (2017): Carnivorous sponges (Porifera, Cladorhizidae) from the Southwest Indian Ocean Ridge seamounts. Deep-Sea Research II 137: 166-189 [http://dx.doi.org/10.1016/j.dsr2.2016.03.004] => JC066
  60. Hoving, H.J.T., Amon, D., Bodur, Y., Haeckel, M., Jones, D.O.B., Neitzel, P., Simon-Lledó, E., Smith, C.R., Stauffer, J.B., Sweetman, A.K. and Purser, A. (2022): The abyssal voyage of the argonauts: deep-sea in situ observations reveal the contribution of cephalopod egg cases to the carbon pump. Deep-Sea Research I 183: 103719. [http://dx.doi.org/10.1016/j.dsr.2022.103719] => SO268
  61. Jordt, A., Köser, K. and Koch, R. (2016): Refractive 3D reconstruction on underwater images. Methods in Oceanography 15-16: 90-113. [http://dx.doi.org/10.1016/j.mio.2016.03.001] => M80-3
  62. Jordt-Sedlazeck, A. and Koch, R. (2013): Refractive Structure-from Motion on Underwater Images. IEEE International Conference on Computer Vision 2013: 7-64. [http://dx.doi.org/10.1109/ICCV.2013.14] => M80-3
  63. Kaiser, S., Smith, C.R. and Martínez Arbizu, P. (2017): Editorial: Biodiversity of the Clarion Clipperton Fracture Zone. Marine Biodiversity 47: 259: 264. [http://dx.doi.org/10.1007/s12526-017-0733-0] => SO239
  64. Keir, R., Schmale, O., Seifert, R. and Sültenfuß, J. (2009): Isotope fractionation and mixing in methane plumes from the Logatchev hydrothermal field. Geochemistry, Geophysics, Geosystems 10 (5): Q05005, [http://dx.doi.org/10.1029/2009GC002403] => ATA-1
  65. Keith, M., Haase, K.M., Häckel, F., Schwarz-Schampera, U., KLemd, R., Hannington, M., Strauss, H., McConachy, T. and Anderson, M. (2021): Trace element fractionation and precipitation in submarine back-arc hydrothermal systems, Nifonea caldera, New Hebrides subduction zone. Ore Geology Reviews 135: 104211. [https://doi.org/10.1016/j.oregeorev.2021.104211] => SO229
  66. Kersken, D., Janussen, D. and Martínez Arbizu, P. (2018a): Deep-sea glass sponges (Hexactinellida) from polymetallic nodule fields in the Clarion-Clipperton Fracture Zone (CCFZ), northeastern Pacific: Part I - Amphidiscophora. Marine Biodiversity 48: 545-573. [http://dx.doi.org/10.1007/s12526-017-0727-y] (+ Corrigendum) => SO239
  67. Kersken, D., Kocot, K., Janussen, D., Schell, T., Pfenninger, M., Martínez Arbizu, P. (2018b): First insights into the phylogeny of deep-sea glass sponges (Hexactinellida) from polymetallic nodule fields in the Clarion-Clipperton Fracture Zone (CCFZ), northeastern Pacific. Hydrobiologia 811: 283-293. [https://doi.org/10.1007/s10750-017-3498-3]  => SO239
  68. Kersken, D., Janussen, D. and Martínez Arbizu, P. (2019): Deep-sea glass sponges (Hexactinellida) from polymetallic nodule fields in the Clarion Clipperton Fracture Zone (CCFZ), northeastern Pacific: Part II – Hexasterophora. Marine Biodiversity 49: 947-987. [https://doi.org/10.1007/s12526-018-0880-y] => SO239
  69. Kleint, C., Hawkes, J.A., Sander, S.G. and Koschinsky, A. (2013): Voltammetric Investigation of Hydrothermal Iron Speciation. Frontiers in Marine Science 3 (75): 1-11.  [http://dx.doi.org/10.3389/fmars.2016.00075] => SO229
  70. Klevenz, V., Sumoondur, A., Osterta-Henning, C. and Koschinsky, A. (2010): Concentrations and distributions of dissolved amino acids in fluids from Mid-Atlantic Ridge hydothermal vents. Geochemical Journal 44: 387-397. [https://doi.org/10.2343/geochemj.1.0081] => ATA-1, ATA-2
  71. Klevenz, V., Bach, W., Schmidt, K., Hentscher, M., Koschinsky, A. and Petersen, S. (2011): Geochemistry of vent fluid particles formed during initial hydrothermal fluid-seawater mixing along the Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems (G3) 12 (10): Q0AE05. [http://dx.doi.org/10.1029/2011GC003704] => ATA-1, ATA-2, MSM10/3, M78/2
  72. Klevenz, V., Sander, S., Perner, M. and Koschinsky, A. (2012): Amelioration of free copper by hydrothermal vent microbes as a response to high copper concentrations. Chemistry and Ecology. 28 (5): 405-420. [http://dx.doi.org/10.1080/02757540.2012.666531] => MSM10/3, M78/2
  73. Komai, T. (2013): A new species of the hippolytid genus Paralebbeus Bruce and Chace, 1986 (Crustacea: Decapoda: Caridea) from the Coral Seamount, southwestern Indian Ocean. Zootaxa 2646 (2): 171-179. [http://dx.doi.org/10.11646/zootaxa.3646.2.5] => JC066
  74. Korfhage, S., Rossel, S., Brix, S., McFadden, C.S., Òlafsdóttier, S.H. and Martínez Arbizu, P. (2022): Species Delimitation of Hexacoralia and Octocorallia Around Iceland Using Nucelar and Mitochondrial DNA and Proteome Fingerprinting. Frontier in Marine Science 9: 838201. [http://dx.doi.org/10.3389/fmars.2022.838201] => MSM75, SO276
  75. Koschinsky, A., Kausch, M. and Borowski, C. (2014): Metal concentrations in the tissues of the hydrothermal vent mussel Bathymodiolus: Reflection of different metal sources. Marine Environmental Research 95: 62-73. [http://dx.doi.org/10.1016/j.marenvres.2013.12.012] => ATA-2, M78/2 
  76. Koschinsky, A., Schmidt, K. and Garbe-Schönberg, D. (2020): Geochemical time series of hydrothermal fluids from the slow-spreading Mid-Atlantic Ridge: Implications of medium-term stability. Chemical Geology 552: 119760. [https://doi.org/10.1016/j.chemgeo.2020.119760]  => ATA-1, ATA-2, MSM 10/3, M78-2
  77. Krabbenhöft, A., Eisenhauer, A., Böhm, F., Vollstaedt, H., Fietzke, J., Liebetrau, V., Augustin, N., Peucker-Ehrenbrink, B., Müller, M.N., Horn, C., Hansen, B.T., Nolte, N. and Wallmann, K. (2010): Constraining the marine strontium budget with natural strontium isotope fractionations (87SE/86SE*, δ88/86SR) of carbonates, hydrothermal solutions and river waters. Geochimica et Cosmochimica Acta 74: 4097–4109. [http://dx.doi.org/10.1016/j.gca.2010.04.009 ] => ATA-2
  78. Krause, S., Molari, M., Gorb, E.V., Gorb, S.N., Kossel, E., Haeckel, M. (2020): Persistance of plastic debris and its colonization by bacterial communities after two decades on the abyssal seafloor. Nature Research – Scientific Reports 10: 9848. [https://doi.org/10.1038/s41598-020-66361-7] => SO242-2
  79. Kwasnitschka, T., Hansteen, T.H., Devey, C.W. and Kutterolf, S. (2013): Doing fieldwork on the seafloor: Photogrammetric techniques to yield 3D visual models from ROV video. Computers and Geosciences 52: 218-226. [http://dx.doi.org/10.1016/j.cageo.2012.10.008 ] => M80-3
  80. Laming, S.R., Christodoulou, M., Martínez Arbizu, P. and Hilário, A. (2021): Comparative Reproductive Biology of Deep-Sea Ophiuroids Inhabiting Polymetallic-Nodule Fields in the Clarion-Clipperton Fracture Zone. Frontiers in Marine Science 8: 667398. [http://dx.doi.org/10.3389/fmars.2021.663798] => S0239
  81. Lehmenhecker, S. and Wulff, T. (2012): ROV-based Revolver Marker Dropper for Consistent Seafloor Surveying. Sea Technology 53 (7): 33-35. [no doi] => ARK XXVI/2 / PS78 
  82. Lima, S.M., Haase, K.M., Beier, C., Regelous, M., Brandl, P.A., Hauff, F. and Krumm, S. (2017). Magmatic evolution and source variations at the Nifonea Ridge (New Hebrides Island Arc). Journal of Petrology 58 (3): 473-494. [http://dx.doi.org/10.1093/petrology/egx023] => SO229
  83. Lörz, A.-N. and Horton, T. (2021): Investigation of the Amathillopsidae (Amphipoda, Crustacea), including the description of a new species, reveals a clinging lifestyle in the deep sea worldwide. ZooKeys 1031: 19-39. [https://doi.org/10.3897/zookeys.1031.62391] => SO276
  84. Macpherson, E., Amon, D. and Clark, P.F. (2014): A new species of Munidopsis from a seamount of the Southwest Indian Ridge (Decapoda: Munidopsidae). Zootaxa 3753 (3): 291-296. [http://dx.doi.org/10.11646/zootaxa.3753.3.8] => JC066
  85. McGinnis, D.F. Sommer, S., Lorke, A., Glud, R.N. and Linke, P. (2014): Quantifying tidally-driven benthic oxygen exchange across permeable sediments: An aquatic eddy correlation study. Journal of Geophysical Research – Oceans 119: 6918–6932. [http://dx.doi.org/10.1002/2014JC010303] => CE913
  86. Mevenkamp, L., Guilini, K., Boetius, A., De Grave, J., Lacorce, B., Vandenberghe, D., VIncze, L. and Vanreusel, A. (2019): Responses of an abyssal meiobenthic community to short-term burial with crushed nodule particles in the south-east Pacific. Biogeosciences 16: 2329-2341. [https://doi.org/10.5194/bg-16-2329-2019] => SO242-2
  87. Meyer-Kaiser, K., Bergmann, M. and Soltwedel, T. (2019): Recruitment of Arctic deep-sea invertebrates: Results from a long-term hard-substrate colonization experiment at the Long-Term Ecological Research observatory HAUSGARTEN. Limnology and Oceanography 64: 1924-1938. [https://doi.org/10.1002/lno.11160] => PS78, PS108
  88. Meyer-Kaiser, K., Smith, A. and Soltwedel, T. (2021a): Ontogenetic development of the crinoid Poliometra prolixa in the Arctic seep sea. Invertebrate Biology 140: e12331. [https://doi.org/10.1111/ivb.12331] => PS78, PS108
  89. Meyer-Kaiser, K., Plowman, C.Q., Soltwedel, T. (2021b): Reproduction, recruitment, and growth of the Arctic deep-sea hydroid Bouillonia cornucopia. Invertebrate Biology 140: e12332. [https://doi.org/10.1111/ivb.12332] => PS108
  90. Miller, K.A., Thompson, K.F. Johnston, P. and Santillo, D. (2018): An Overview of Seabed Minind Including the Current State of Development, Environmental Impacs, and Knowledge Gaps. Frontiers in Marine Science 4: 1-24. [https://doi.org/10.3389/fmars.2017.00418] => M78/2/ SO239 / SO242-2
  91. Molari, M., Janssen, F., Vonnahme, F., Wenzhöfer, F. and Boetius, A. (2020a): The contribution of microbial communities in polymetallic nodules to the diversity of the deep-sea microbiome of the Peru Basin (4130 -4198m depth). Biogeosciences 17: 3203-322. [https://doi.org/10.5194/bg-17-3203-2020] => SO242-2
  92. Molari, M., Janssen, F., Vonnahme, F., Wenzhöfer, F. and Boetius, A. (2020b): Microbial communities associated with sediments and polymetallic nodules of the Peru Basin. Biogeosciences XX: xx-xx (accepted). [https://doi.org/10.5194/bg-2020-11] => SO242-2
  93. Narayanaswamy, B.E., Rea T., Serpetti, N. and Lamont, P.A. (2017): What lies within: Annelid polychaetes found in micro-habitats of coral/carbonate material from SW Indian ocean seamounts. Deep-Sea Research II 137: 157-165. [http://dx.doi.org/10.1016/j.dsr2.2016.06.018] => JC066/067
  94. Nasemann, P., Gault,-Ringold, M., Stirling, C.H., Koschinsky, A. and Sander, S.G. (2018): Processes affecting the isotopic composition of dissolved iron in hydrothermal plumes: A case study from the Vanuatu back-arc. Chemical Geology 476: 70-84. [https://doi.org/10.1016/j.chemgeo.2017.11.005] => SO229
  95. Nye, V. (2013): New species of hippolytid shrimps (Crustacea: Decapoda: Caridea: Hippolytidae) from a southwest Indian Ocean seamount. Zootaxa 3637 (2): 101-112. [https://doi.org/10.11646/zootaxa.3637.2.1] => JC066
  96. O’Loughlin, P.M., Mackenzie, M. and VandenSpiegel, D. (2013): New sea cucumber species from the seamounts on the Southwest Indian Ocean Ridge (Echinodermata: Holothuroidea: Aspidochirotida, Elasipodida, Dendrochirotida). Memoirs of Museum Victoria 70: 37-50. [http://doi.org/10.24199/j.mmv.2013.70.04] => JC066
  97. Paul, S.A.L., Gaye, B., Haeckel, M., Kasten, S. and Koschinsky, A. (2018): Biogeochemical Regeneration of a Nodule Mining Disturbance Site: Trace Metals, DOC and Amino Acids in Deep-Sea Sediments and Pore Waters. Frontiers in Marine Science 5 (117): 17pp. [http://dx.doi.org/10.3389/fmars.2018.00117] => SO242-2
  98. Paul, S.A.L., Zitoun, R., Noowong, A., Manurajah, M and Koschinsky, A. (2021): Copper-binding ligands in deep-sea pore waters of the Pacific Ocean and potential impacts of polymetallic nodule mining on the copper cycle. Scientific Reports 11: 11245. [https://doi.org/10.1038/s41598-021-97813-3] => SO242-2
  99. Perner, M., Bach, W., Hentscher, M., Koschinsky, A., Garbe-Schönberg, D., Streit, W.R. and Strauss, H. (2009): Short-term microbial and physico-chemical variability in low-temperature hydrothermal fluids near 5°S on the Mid-Atlantic Ridge. Environmental Microbiology 11 (10): 2526–2541. [http://dx.doi.org/10.1111/j.1462-2920.2009.01978.x] => ATA-2
  100. Perner, M., Petersen, J.M., Zielinski, F., Gennerich, H.-H. and Seifert, R. (2010): Geochemical constraints on the diversity and activity of H2-oxidizing microorganisms in diffuse hydrothermal fluids from a basalt- and an ultramafic-hosted vent. FEMS Microbiological Ecology 72: 55-71. [http://dx.doi.org/10.1111/j.1574-6941.2010.00940.x] => ATA-1, ATA-2
  101. Perner, M., Hentscher, M., Rychlik, N., Seifert, R., Strauss, H. and Bach, W. (2011): Driving forces behind the biotope structures in two low-temperature hydrothermal venting sites on the southern Mid-Atlantic Ridge. Environmental Microbiology Reports 3 (6): 727–737. [http://dx.doi.org/10.1111/j.1758-2229.2011.00291.x] => M78-2
  102. Perner, M., Gonnella, G., Hourdez, S. Böhnke, S. Kurtz, S. and Girguis, P. (2013a): In situ chemistry and microbial community compositions in five deep-sea hydrothermal fluid samples from Irina II in the Logatchev field. Environmental Microbiology 15 (5): 1551–1560. [http://dx.doi.org/10.1111/1462-2920.12038] => MSM10-3
  103. Perner, M., Hansen, M., Seifert, R., Strauss, H., Koschinsky, A., and Petersen S. (2013b): Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments. Geobiology 11: 340-355. [http://dx.doi.org/10.1111/gbi.12039] => ATA-1, ATA-2, MSM10-3, M78-2
  104. Perner, M., Gonnella, G., Kurtz, S. and LaRoche, J. (2014): Handling Temperature Bursts Reaching 464°C, Different Microbial Strategies in the Sisters Peak Hydrothermal Chimney. Applied and Environmental Microbiology 80 (15): 4585-4598. [http://dx.doi.org/10.1128/AEM.01460-14] => M78/2
  105. Peters, M., Strauss, H., Farquhar, J., Ockert, C., Eickmann, B. and Jost, C.L. (2010): Sulfur cycling at the Mid-Atlantic Ridge: A multiple sulfur isotope approach. Chemical Geology 269: 180-196. [http://dx.doi.org/10.1016/j.chemgeo.2009.09.016] => ATA-1, ATA-2
  106. Petersen, J.M., Ramette, A., Lott, C., Cambon-Bonavita, M.-A., Zbinden, M. and Dubilier, N. (2010): Dual symbiosis of the vent shrimp Rimicaris exoculata with filamentous gamma- and espilonproteobacteria at four Mid-Atlantic Ridge hydrothermal vent fields. Environmental Microbiology 12 (8): 2204-2218. [http://dx.doi.org/10.1111/j.1462-2920.2009.02129.x] => ATA-2
  107. Petersen, J.M., Zielinski, F.U., Pape, T., Seifert, R., Moraru, C., Amann, R., Hourdez, S., Giguis, P.R., Wankel, S.D., Barbe, V., Pelletier, E., Fink, D., Borowski, C., Bach, W., Dubilier, N. (2011): Hydrogen is an energy source for hydrothermal vent symbiosis. Nature 476: 176-180 (+ suppl). [http://dx.doi.org/10.1038/nature10325] => MSM10/3 / M78-2
  108. Peukert, A., Schoening, T., Alevizos, E., Köser, K., Kwasnitschka, T. and Greinert, J. (2018): Understanding Mn-nodule distribution and related deep-sea mining using AUV-based hydroacustic sensing and optical observations. Biogeosciences Disucss. 15: 2525-2549. [https://doi.org/10.5194/bg-15-2525-2018]  => SO239 / SO242-2
  109. Pratt, N., Wilson, D.J., Li, Tao, Van de Flierdt, T. (2019): Temporal distribution and diversity of cold-water corals in the southwest Indian Ocean over the past 25,000 years. Deep Sea Research I 149: 103049. [https://doi.org/10.1016/j.dsr.2019.05.009] => JC066
  110. Purkiani, K., Gillard, B., Paul, A., Haeckel, M., Haalboom, S., Greinert, J., de Stigter, H., Hollstein, M., Maeye, M., Vink, A., Thomsen, L. and Schulz, M. (2021): Numerical Simulation of Deep-Sea Sediment Transport Induced by a Dredge Experiment in the Northeastern Pacific Ocean. Frontiers in Marine Science 8: 719463. [http://dx.doi.org/10.3389/fmars.2021.719463] => SO268
  111. Purser, A., Marcon, Y., Hoving, H.J.T., Veccione, M., Piatkowski, U., Eason, D., Bluhm, H. and Boetius, A. (2016): Association of deep-sea incirrate octopods with manganese crusts and nodule fields in the Pacific Ocean. Current Biology 26 (24): R1268–R1269. [http://dx.doi.org/10.1016/j.cub.2016.10.052] => SO242-2
  112. Quintanilla, E., Rodigrues, C.F., Henriques, I. and Hilário, A. (2020): Microbial Associations of Abyssal Gorgonians and Anemones (<4,000 m Depth) at the Clarion-Clipperton Fracture Zone. Frontiers in Microbiology 13: 828469. [http://dx.doi.org/10.3389/fmicb.2022.828469] => SO268
  113. Raddatz, J., Dullo, W.-C., Hansteen, T., López Correa, M. and Rüggeberg, A. (2011): Bioluminescence in deep-sea isidid gorgonians from the Cape Verde archipelago. Coral Reefs 30: 579. [http://dx.doi.org/10.1007/s00338-011-0743-5] => M80/3
  114. Reiswig, H.M., Dohrmann, M., Kelly, M., Mills, S., Schupp, P.J. and Wörheide, G. (2021): Rossellid glass sponges) Porifera, Hexactinellida) from New Zealand waters, with description of one new genus and six new species. ZooKeys 1060: 33-84. [https://doi.org/10.3897/zookeys.1060.63307] => SO254
  115. Rossel, P., Stubbins, A., Rebling, T., Koschinsky, A., Hawkes, J.A. and Dittmar, T. (2017): Thermally altered marine dissolved organic matter in hydrothermal fluids. Organic Geochemistry 110: 73-86. [http://dx.doi.org/10.1016/j.orggeochem.2017.05.003] => MSM10/3, M78-2  (+Corrigendum)
  116. Roterman, C.N., Copley, J.T., Linse, K.T., Tyler, P.A. and Rogers, A.D. (2013): The biogeography of the yeti crabs (Kiwaidae) with notes on the phylogeny of the Chirostyloidea (Decapoda: Anomura). Procedures of the Royal Society B 280: 10 pp. [http://dx.doi.org/10.1098/rspb.2013.0718] => JC067
  117. Rovelli, L., Dengler, M., Schmidt, M., Sommer, S., Linke, P. and McGinnis, D. (2016): Thermocline mixing and vertical oxygen fluxes in the stratified central North Sea.  Biogeosciences 13 (5): 1609-1620. [http://dx.doi.org/10.5194/bg-13-1609-2016] => CE0913
  118. Schmidt, K., Garbe-Schönberg, D., Bau, M. and Koschinsky, A. (2010): Rare earth element distribution in > 400°C hot hydrothermal fluids from 5°S, MAR: The role of anhydrite in controlling highly variable distribution patterns. Geochimica et Cosmochimica Acta 74: 4058-4077. [http://dx.doi.org/10.1016/j.gca.2010.04.007] => ATA-2
  119. Schmidt, K., Garbe-Schönberg, D., Koschinsky, A., Strauss, H., Jost, C.L., Klevenz, V. and Königer, P. (2011): Fluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8°18’S, Mid-Atlantic Ridge): Constraints on fluid-rock interaction in heterogeneous lithoshpere. Chemical Geology 280: 1-18. [http://dx.doi.org/10.1016/ j.chemgeo.2010.07.008] => M78-2
  120. Schmidt, K., Garbe-Schönberg, D., Hannington, M.D., Anderson, M.O., Bühring, B., Haase, K., Haruel, C., Lupton, J.E. and Koschinsky, A. (2017): Boiling vapour-type fluids from the Nifonea vent field (New Hebrides Back-Arc, Vanuatu, SW Pacific): Geochemistry of an early-stage, post-eruptive hydrothermal system. Geochimica et Cosmochimica Acta 207: 185-209. [http://dx.doi.org/10.1016/j.gca.2017.03.016] => SO229
  121. Schmidt, K., Paul, S.A.L. and Achterberg, E.P. (2022): Assessing the availability of trace metals and rare earte elements in deep ocean waters of the Clarion-Clipperon Zone, NE Pacific: application of an in situ DGT passive sampling method. Trends in Analytical Chemistry 155: 116657. [http://dx.doi.org/10.1016/j.trac.2022.116657]. => SO268
  122. Schnabel, K.E. and Ahyjong, S.T. (2019): The squat lobster genus Phylladiorhynchus Baba, 1969 in New Zealand and Australia, with description of six new species. Zootaxa 4688 (3): 301-347. [https://doi.org/10.11646/zootaxa.4688.3.1] => SO254
  123. Schneider von Deimling, J., Rehder, G., Greinert, J., McGinnis, D.F., Boetius, A. and Linke, P. (2011): Quantification of seep-related methane gas emissions at Tommeliten, North Sea. Continental Shelf Research 31: 867-878. [https://doi.org/10.1016/j.csr.2011.02.012] => CE0913
  124. Schneider von Deimling, J., Linke, P., Schmidt, M. and Rehder, G. (2015): Ongoing methane discharge at well site 22/4b (NorthSea) and discovery of a spiral vortex bubble plume motion. Marine and Petroleum Geology 68: 718-730. [http://dx.doi.org/10.1016/j.marpetgeo.2015.07.026] => CE12010
  125. Schoening, T., Bodur, Y. and Köser, K. (2021 preprint): Automated Image Analysis to Map the Extent of Deep-Sea Mining Plumes Reveals a Larger Impacted Area Compared to Manual Analysis. XXX [https://doi.org/10.21203/rs.3.rs-1173923/v1] => SO268
  126. Sedlazeck, A., Köser, K. and Koch, R. (2009): 3D Reconstruction Based on Underwater Video from ROV KIEL 6000 Considering Unterwater Imaging Conditions. In: IEEE OCEANS Conference, Bremen, Germany, 2009: 10 pp. [https://doi.org/10.1109/OCEANSE.2009.5278305] => M78-2
  127. Serpetti, N., Taylor, M.., Brennen, D., Green, D.H., Rogers, A.D., Paterson, G.L.J. and Narayanaswamy, B.E. (2017): Ecological adaptations and commensal evolution of the Polynoidae (Polychaeta) in the Southwest Indian Ocean Ridge: A phylogenetic approach. Deep Sea Research II 137: 273-281. [http://dx.doi.org/10.1016/j.dsr2.2016.06.004] => JC066, JC067
  128. Signorelli, J.H., Sellanes, J. and Asorey, C.M. (2021): Bathymodiolinae Mussels in the South-eastern Pacific: the presence of the genus Adipicola (Bivalvia: Mytilidae) at a methane seep site off central Chile. Marine Biology Research 17:5-6: 486-493 [https://doi.org/10.1080/17451000.2021.1975754]
  129. Silantyev, S.A., Koepke, J., Ariskin, A.A., Anosova, M.O., Krasnova, E.A., Dubinina, E.O.  and Suhr, G. (2014): Geochemical Nature and Age of the Plagiogranite – Gabbronorite Association of the Oceanic Core Complex of the Mid-Atlantic Ridge at 5°10’ S. Petrology 22 (2): 109-127. [https://doi.org/10.1134/S0869591114020064] => ATA-2
  130. Sim-Smith, C. and Kelly, M. (2019): Review of the sponge genus Penares (Demospongiae, Tetractinellida, Astrophorina) in the New Zealand EEZ, with descriptions of new species. Zootaxa 4638 (1): 001-056. [https://doi.org/10.11646/zootaxa.4638.1.1] => SO254
  131. Soltwedel, T. Hasemann, C., Vedenin, A., Bergmann, M., Taylor, J. and Krauß, F. (2018): Bioturbation rates in the deep Fram Strait: results from in situ experiments at the arctic LTER observatory HAUSGARTEN. Journal of Experimental Marine Biology and Ecology 511: 1-9. [https://doi.org/10.1016/j.jembe.2018.11.001] =>  PS78
  132. Staples, D.A. (2019): Pycnogonids (Arthropoda, Pycnogonida) from the Southwest Indian Ridge. Zootaxa 4567 (3): 401-449. [https://doi.org/10.11646/zootaxa.4567.3.1] => JC066
  133. Steinert, G., Busch, K., Bayer, k., Kodami, S., Martínez Arbizu, P., Kelly, M., Mills, S., Erpenbeck, D., Dohrmann, M., Wörheide, G., Hentschel, U. and Schupp, P.J. (2020): Compositional and Quantitative Insights Into Bacterial and Archaeal Communities of South Pacific Deep-Sea Sponges (Demospongiae and Hexactinellida). Frontiers in Microbiology 11 (716): 16pp. [https://doi.org/10.3389/fmicb.2020.00716] => SO254
  134. Steinle, L. , Schmidt, M., Bryant, K., Haeckel, M., Linke, P., Sommer, S., Zopfi, J., Lehmand, M.F., treude, T. and  Niemann, H. (2016): Linked sediment and water-column methanotrophy at a man-made gas blowout in the North Sea: Implications for methane budgeting in seasonally stratified shallow seas. Limnology and Oceanography 61: 367-386. [https://doi.org/10.1002/lno.10388] => CE12010
  135. Stratman, T., Mevenkamp, L. Sweetman, A.K., Vanreusel, A. and van Oevelen, D. (2018a): Has Phytodetritus Processing by an Abyssal Soft-Sediment Community Recovered 26 Years after an Experimental Disturbance? Frontiers in Marine Science 5 (59): 1 - 13. [https://doi.org/10.3389/fmars. 2018.00059] => SO242-2
  136. Stratman, T., Voorsmit, I., Gebratuk, A., Brown, Al., Purser, A., Marcon Y., Sweetman, A.K., Jones, D.O.B., van Oevelen, D. (2018b): Recovery of Holothuroidea population density, community, composition, and respiration activity after a deep-sea disturbance experiment. Limnology and Oceanograpby 63: 2140-2153. [https://doi.org/10.1002/lno.10929] => SO242-2
  137. Stratmann, T., Soetart, K., Kerseken, D., van Oevelen, D. (2021): Polymetallic nodules are essential for food-web integrity of a prospective deep-seabed mining are in Pacific abyssal plains. 11: 121238. [https://doi.org/10.1038/s41598-021-91703-4] => SO239 / SO242-2
  138. Suess, E. (2014): Marine cold seeps and their manifestations: geological control, biogeochemical critera and environmental conditions. International Journal of Earth Scienes (Geologische Rundschau) published online: 28 pp. [https://doi.org/10.1007/s00531-014-1010-0] => SO210
  139. Taylor, M.L. and Rogers, A.D. (2015): Evolutionary dynamics of a common sub-Antarctic octocoral family. Molecular Phylogenetics and Evolution. 84: 185-204. [http://dx.doi.org/10.1016/ j.ympev.2014.11.008] => JC066
  140. Taylor, M.L. and Rogers, A.D. (2017): Primnoidae (Cnidaria: Octocorallia) of the SW Indian Ocean: new species, genus revisions and systematics. Zoological Journal of the Linnean Society 181: 70-97. [https://doi.org/10.1093/zoolinnean/zlx003] => JC066
  141. Taylor, M.L. and Roterman, C.N. (2017): Invertebrate population genetics across Earth’s larges habitat: The deep-sea floor. Molecular Ecology 26: 4872–4896. [https://doi.org/10.1111/mec.14237] => JC066
  142. Taylor, M.L., Gwinnett, C., Robinson, L.F. and Woddall, L.C. (2016): Plastic microfibre ingestion by deep-sea organisms. Scientific Reports 6 (33997): 1-9. [https://doi.org/10.1038/srep33997] => JC066
  143. Uhlenkott, K., Meyn, K., Vink, A. and Martínez Arbizu, P. (2023): A review of megafauna diversity and abundance in an exploration area for polymetallic nodules in the eastern part of the Clarion Clipperton Fracture Zone (North East Pacific), and implications for potential future deep-sea mining in this area. Marine Biodiversity 53: 22. [https://doi.org/10.1007/s12526-022-01326-9] => SO239, SO268
  144. van der Heijden, K., Petersen, J.M., Dubilier, N. and Borowski, C. (2012): Genetic connectivity between North and South Mid-Atlantic Ridge chemosynthetic bivalves and their symbionts. PLoS One 7 (7): e39994. [https://doi.org/10.1371/journal.pone.0039994] => ATA-2, M78-2
  145. Van Dover, C.L., Arnau-Haond, S., Gianni, M., Helmreich, S., Huber, J.A., Jaeckel, A.L., Metaxas, A., Pendleton, L.H., Petersen, S., Ramirez-Llodra, E., Steinberg, P.E., Tunnicliffe, V. And Yamamoto, H. (2018): Scientific rationale and international oblications for protection of active hydrothermal vent cosystems from deep-sea mining. Marine Policy 90: 20-28. [https://doi.org/10.1016/j.marpol.2018.01.020] => SO229
  146. Vanreusel, A., Hilário,  A., Riberio, P.A., Menot, L. and Martínez Arbizu, P. (2016): Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Scientific Reports 6 (26808): 1-6. [https://doi.org/10.1038/srep26808] => SO239
  147. Vielstädte, L., Karstens, J., Haeckel, M., Schmidt, M., Linke, P., Reimann, S., Liebetrau, V., McGinnis, D. and Wallmann, K. (2015): Quantification of methane emissions at abandoned gas wells in the Central North Sea. Marine and Petroleum Geology 68: 848-860. [http://dx.doi.org/10.1016/ j.marpetgeo.2015.07.030] => CE12010; AL412
  148. Vielstädte, L., Haeckel, M., Karstens, J., Linke. P., Schmidt, M., Steinle, L. and Wallmann, K. (2017): Shallow Gas Migration along Hydrocarbon Wells – an Unconsidered, Anthropogenic Source of Biogenic Methane in the North Sea. Environmental Science and Technology 51 (17): 10262-10268. [https://doi.org/10.1021/acs.est.7b02732] => CE12010; AL412
  149. Vielstädte, L., Linke. P., Schmidt, M. Sommer, S., Haeckel, M., Braack, M., Wallmann, K. (2019): Footprint and detectability of a well leaking CO2 in the central North Sea: Implications from a field experiment and numerical modelling. Internationl Journal of Greenhouse Gas Control 84: 190-203. [https://doi.org/10.1016/j.ijggc.2019.03.012] => CE12010
  150. Volz, J., Haffert, L., Haeckel, M., Koschinsky, A. and Kasten, S. (2020): Impact of small-scale disturbances on geochemical conditions, biogeochemical processes and element fluxes in surface sediments of the eastern Clarion-Clipperon Zone, Pacific Ocean. Biogeosciences 17: 1113-1131. [https://doi.org/10.5194/bg-17-1113-2020] => SO239
  151. Vonnahme, T.R., Molari, M., Jannsen, F., Wenzhöfer, F., Haeckel, M. and Boetius, A. (2020): Effects of a deep-sea mining experiment on seafloor microbial communities and functions after 26 years. Science Advances 6: 14 pp. [https://doi.org/10.1126/sciadv.aaz5922] => SO242-2
  152. Walter, M., Mertens, C., Stöber, U., German, C.R., Yoerger, D.R., Sültenfuß, J., Rhein, M., Melchert, B., Baker, E.T. (2010): Rapid dispersal of a hydrothermal plume by turbulent mixing. Deep Sea Research I 57: 931-945. [https://doi.org/10.1016/j.dsr.2010.04.010] => M78-2
  153. Wenzhöfer, F., Wulff, T., FloegeL, S., Sommer, S. and Waldmann, C. (2016a): ROBEX – Innovative robotic technologies for ocean observations, a deep-sea demonstration mission. Oceans16/IEEE, Monterey, USA, September 2016. [https://doi.org/10.1109/OCEANS.2016.7761215] => PS108
  154. Wenzhöfer F, Lemburg J, Hofbauer M, Lehmenhecker S. and Faerber P. (2016b) Tramper – An autonomous crawler for long-term benthic oxygen flux studies in remote deep-sea ecosystems. Oceans16/IEEE, Monterey, USA, September 2016. [no doi] => PS108
  155. Wiggins, S. W., Leifer, I., Linke, P. and Hildebrand, J.A. (2015): Long-term acoustic monitoring at North Sea well site 22/4b. Marine and Petroleum Geology 68: 776-788. [http://dx.doi.org/10.1016/j.marpetgeo.2015.02.011] => CE12010
  156. Wilckens, F.K., Reeves, E.P., Bach, W., Meixner, A., Seewald, J.S., Koschinsky, A. and Kasemann, S.A. (2018): The influence of magmatic fluids and phase separation on B systematics in submarine hydrothermal vent fluids from back-arc basinsGeochimica et Cosmochimica Acta 232: 140 -162. [https://doi.org/10.1016/j.gca.2018.04.023] => SO229
  157. Wilfert, P., Krause, S., Liebetrau, V., schönfeld, J., Haeckel, M., Linke, P., Treude, T. (2015): Response of anaerobic methanotrophs and benthic foraminifera to 20 years of methane emission from a gas blowout in the North Sea. Marine and Petroleum Geology 68: 731-742. [http://dx.doi.org/10.1016/j.marpetgeo.2015.07.012] => CE12010
  158. Woodall, L.C., Sanchez-Vidal, A., Canals, M., Paterson, G.L.J., Coppock, R., Slieght, V., Calafat, A., Rogers, A.D., Narayanaswamy, B.E. and Thompson, R.C. (2014): The deep sea is a major sink for microplastic debris. R. Soc. open sci 1: 140317. [http://dx.doi.org/10.1098/rsos.140317] => JC066
  159. Woodall, L.C., Robinson, L.F., Rogers, A.D., Narayanaswamy, B.E. and Paterson, G.L.J. (2015): Deep-sea litter: a comparison of seamounts, banks and a ridge in the Atlantic and Indian Oceans reveals both environmental and anthropogenic factors impact accumulation and composition. Frontiers in Marine Science 2: 1 – 10. [https://doi.org/10.3389/fmars.2015.00003] => JC066
  160. Zapata-Hernández, G., Sellanes, J., Thurber, A. R., Levin, L. A., Chazalon, F. and Linke, P. (2014): New insights on the trophic ecology of bathyal communities from the methane seep area off Concepción, Chile (~36º S). Marine Ecology 35 (1): 1-21. [https://doi.org/10.1111/maec.12051] => SO210
  •  

    Scientific Head 

    Dr. Friedrich Abegg
    GEOMAR Helmholtz Centre for Ocean Research Kiel
    Wischhofstr. 1-3
    D-24148 Kiel
    Technology & Logistics Centre
    Tel.: 0049 431 600-2134
    Fax: 0049 431 600-2680
    E-mail: fabegg(at)geomar.de   


    Technical Head

    Martin Pieper (Dipl. Ing.)
    Technology & Logistics Centre
    Tel.: 0049 431 600-1688
    Fax: 0049 431 600-2680
    E-mail: mpieper(at)geomar.de 


    Scientific Advisor

    Prof. Dr.Colin Devey
    FB4: Dynamics of the Ocean Floor
    Tel.: 0049 431 600-2257
    Fax: 0049 431 600-2924
    E-mail: cdevey(at)geomar.de