Effects of elevated pCO_2 on living benthic foraminifera -

Principle investigator:
Joachim Schönfeld (GEOMAR)

PhD student:
Kristin Haynert (GEOMAR)

Funding:
Exzellenzcluster "Ozean der Zukunft"
DFG - Deutsche Forschungsgemeinschaft

Publication:

Fig. 1. SEM images of benthic foraminifera from Flensburg Fjord.

Fig. 2. Sampling and experimental setup for culturing Ammonia aomoriensis.

Fig. 3. SEM images of Ammonia aomoriensis indicate different dissolution stages that increase at higher pCO_2 in the cultures (A through D).

Laboratory studies revealed that rising pCO_2 values affect the calcification of benthic foraminifera in the world oceans. In comparison to the open ocean, the acidification at strongest affects foraminifera in near-coastal areas and estuaries, like the Baltic Sea and the Gulf of Paria.

Goals:
(1) To obtain a better understanding about the influence of changed CO_2 concentrations on the shell formation of single individuals from boreal and tropical Ammonia species as well as living assemblages in short and long-term experiments.

(2) Monitoring the faunal composition and population density of benthic foraminifera in a natural, CO_2 rich near-coastal environment in Flensburg Fjord in the course of one year.

Results:
Test solution was observed in living benthic foraminifera from Flensburg Fjord. The same solution phenomena were created in a laboratory experiment with elevated pCO_2 values from 929 to 3130 µatm. These results demonstrate that it is necessary to understand the factors influencing benthic foraminiferal carbonate production in detail on species, community and ecosystem levels.