Outline

- Introduction
- Features and Feature Matching
- Geometry of Image Formation
- Calibration
- Structure from Motion
- Dense Stereo
- Conclusion

Camera Obscura

Example image of the camera obscura has been removed in this version due to copy right reasons.

Please refer to the link below.

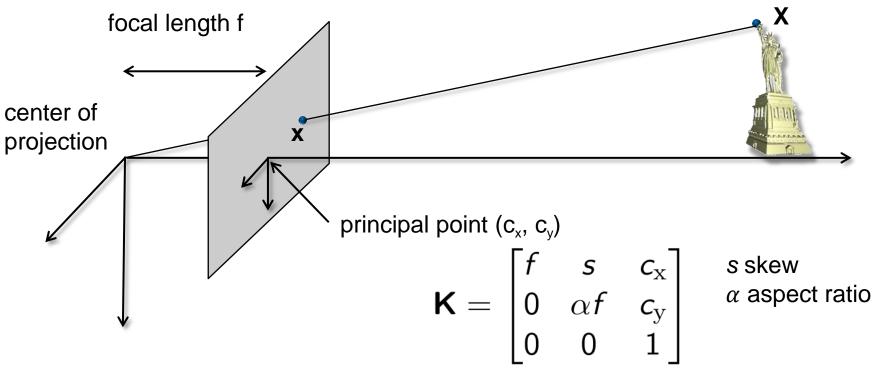
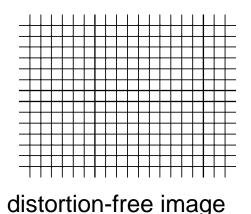
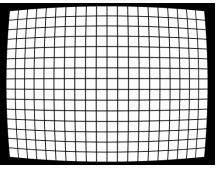
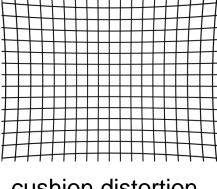

- principle has been known for a long time (e.g. Aristotle)
- box with infinitesimally small hole
- light falls through the hole and image is projected onto wall facing the hole

Image: https://en.wikipedia.org/wiki/Camera_obscura

Pinhole Camera Model



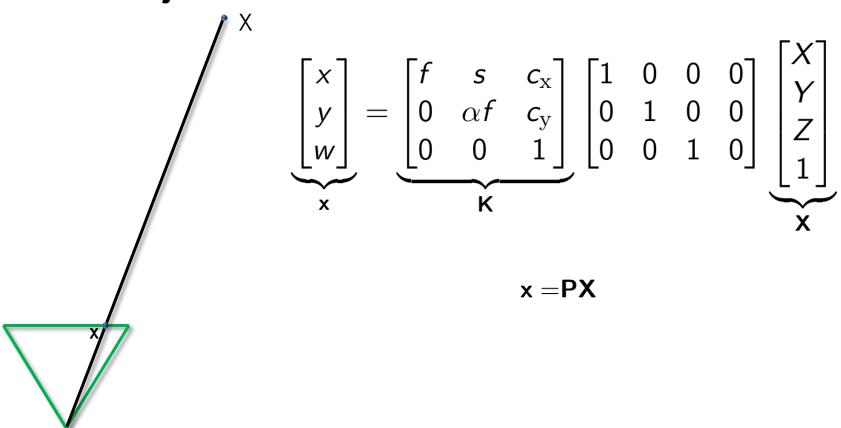

- all rays meet in center of projection (single-view-point camera – SVP camera)



Lens Distortion

barrel distortion

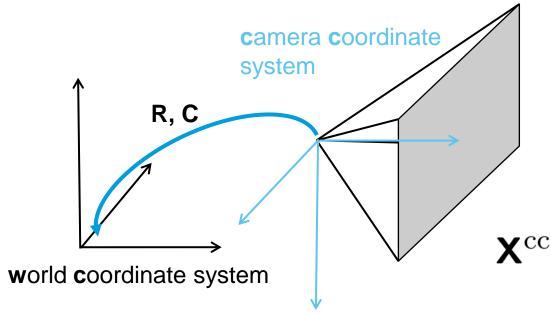
cushion distortion


radial lens distortion modeled by polynomial for image coordinates (x, y):

$$r^2 = x^2 + y^2$$

 $x_d = x(1 + k_1r^2 + k_2r^4)$
 $y_d = y(1 + k_1r^2 + k_2r^4)$

3D-2D Projection


2D-3D Projection

$$\mathbf{x} = (x, y, 1)^{\mathrm{T}}$$

$$X_{\mathrm{s}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \tilde{X}_{\mathrm{a}} = \frac{\mathbf{K}^{-1}\mathbf{x}}{||\mathbf{K}^{-1}\mathbf{x}||_{2}}$$

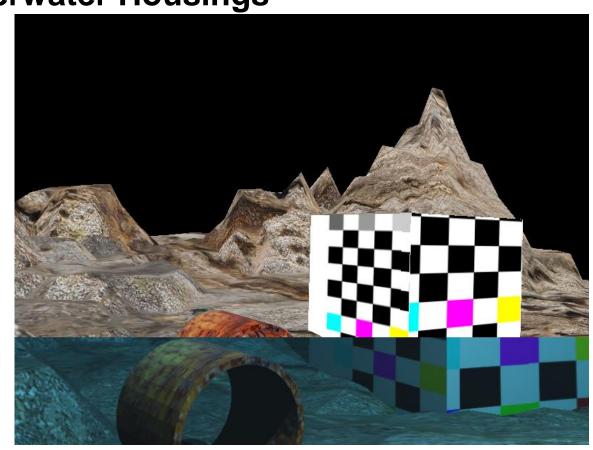
$$X = X_{\mathrm{s}} + \kappa \tilde{X}_{\mathrm{a}}$$

Rotation and Translation in Space

$$\mathsf{X}^{\mathrm{cc}} = \mathsf{R}^{\mathrm{T}} \mathsf{X}^{\mathrm{wc}} - \mathsf{R}^{\mathrm{T}} \mathsf{C}$$

$$\mathbf{X}^{\mathrm{cc}} = \begin{pmatrix} \mathbf{R}^{\mathrm{T}} & -\mathbf{R}^{\mathrm{T}}\mathsf{C} \\ \mathbf{0}^{\mathrm{T}} & 1 \end{pmatrix} \mathbf{X}^{\mathrm{wc}}$$

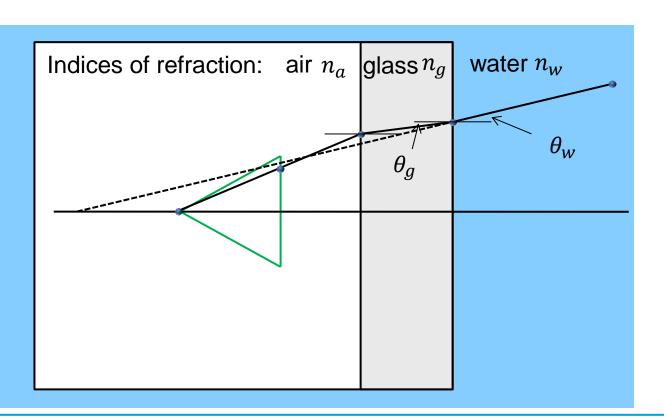
$$X^{wc} = RX^{cc} + C$$


$$X^{wc} = RX_s + C + \kappa R\tilde{X}_a$$

Refraction at Underwater Housings

- different fields of view in air and water
- bent rays allow to "look around" objects to some extent
- changes in focus, especially for dome port cameras

Refraction Examples



Left: top view of turtle in fish tank. Right: refracted view through glass into water.

Refractive Camera Model (thick glass)

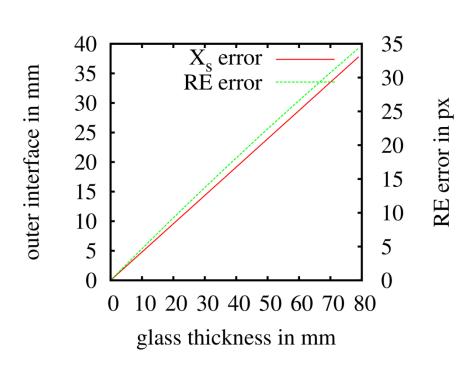
Snell's law:

$$\frac{\sin \theta_w}{\sin \theta_g} = \frac{n_g}{n_w}$$

Exemplary Indices of Refraction

Medium	Index of Refraction (n)
$air (\lambda = 589 nm)$	1.0003
pure water ($\lambda = 700 \text{ nm}, 30^{\circ}\text{C}, \text{ depth } \sim 0 \text{ m}$)	1.329
pure water ($\lambda = 700 \text{ nm}, 30^{\circ}\text{C}, \text{ depth} > 11 000 \text{ m}$)	1.343
sea water ($\lambda = 700$ nm, 30°C, depth ~ 0 m)	1.335
sea water ($\lambda = 700 \text{ nm}, 30^{\circ}\text{C}, \text{ depth} > 11 000\text{m}$)	1.349
sea water ($\lambda = 400 \text{ nm}, 30^{\circ}\text{C}, \text{ depth} > 11 000\text{m}$)	1.363
quartz glass (λ = 589 nm)	1.4584
acrylic glass ($\lambda = 589 \text{ nm}$)	1.51

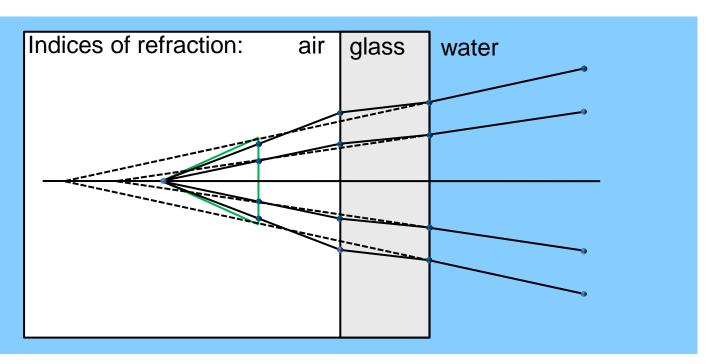
- index of refraction for water depends on water pressure, salinity, temperature and wavelength



Ignoring Glass Thickness

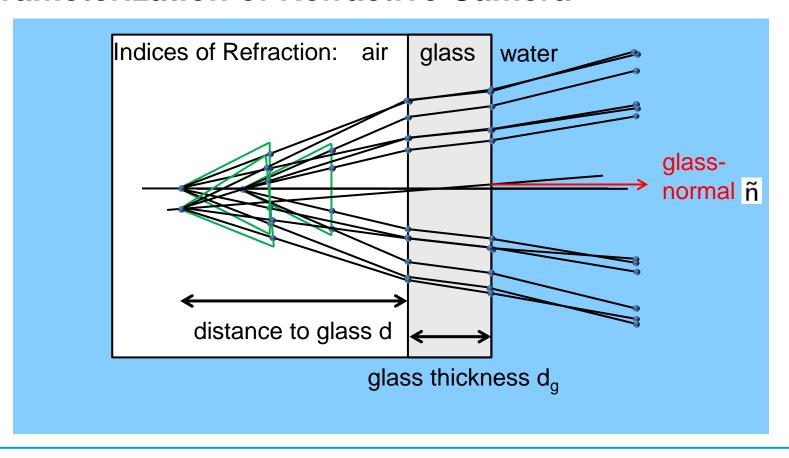
camera:

- image size 1920x1080 px
- focal length 1080 px
- interface distance 10 mm
- interface normal (0,0,1)^T
- X_s error : point shift on outer interface after setting glass thickness to zero
- RE error: re-projection error after back-projecting to 3D point at 3000 mm distance and projecting with zero glass thickness

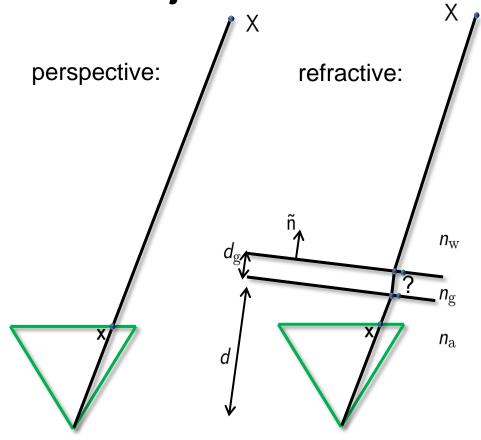


=> For pressure housings, glass must be considered!

Refractive Camera Model

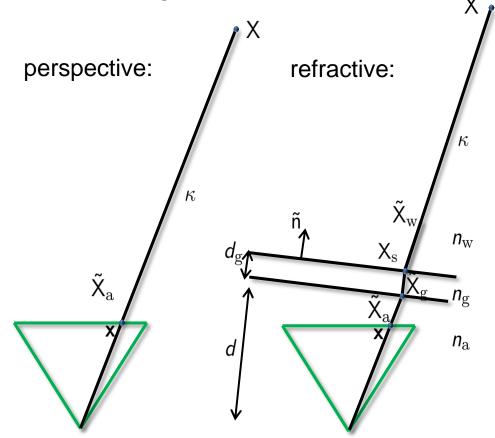


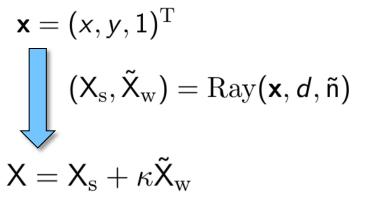
Main assumption of the pinhole camera model invalid! Refraction needs to be modeled explicitly!


Parameterization of Refractive Camera

3D-2D Projection

3D-2D Projection:


- optimization (Kunz et al. 2008)
- determine roots of 12th degree polynomial (*Agrawal et al.* 2012)!
- glass thickness = 0, then the polynomial only has degree 4 (Glaeser/Schröcker 2001)


 $x = P \cdot X$ $\mathcal{P}(x, X, \tilde{n}, d_g, d, n_a, n_g, n_w) = 0$

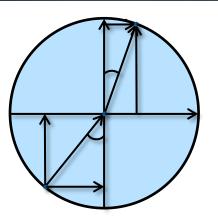
2D-3D Projection

 \tilde{n} interface normal d interface distance d_g interface thickness

Ray Computation

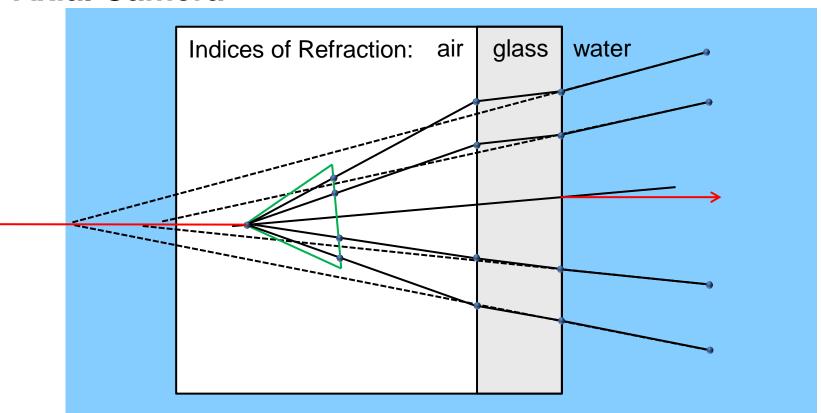
Pixel
$$\mathbf{x} = (x, y, 1)^{\mathrm{T}}$$

Ray in air:
$$\tilde{\mathsf{X}}_{\mathrm{a}} = \frac{\mathsf{K}^{-1}\mathsf{x}}{||\mathsf{K}^{-1}\mathsf{x}||_2}$$


Ray in glass:

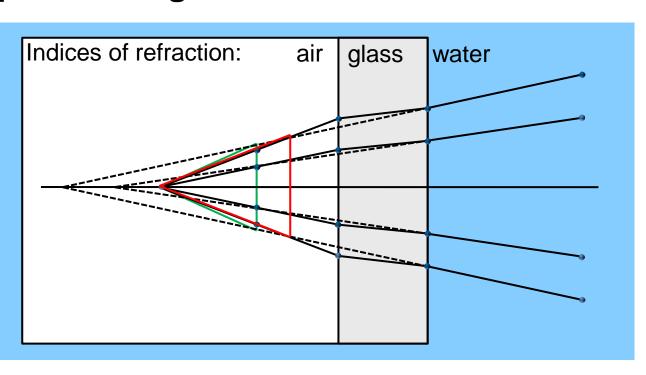
$$\mathsf{X}_{\mathrm{g}} = \underbrace{\frac{\mathit{n}_{\mathrm{a}}}{\mathit{n}_{\mathrm{g}}}}_{=:a} \tilde{\mathsf{X}}_{\mathrm{a}} + \underbrace{\left(-\frac{\mathit{n}_{\mathrm{a}}}{\mathit{n}_{\mathrm{g}}} \tilde{\mathsf{X}}_{\mathrm{a}}^{\mathrm{T}} \tilde{\mathsf{n}} + \sqrt{1 - \frac{\mathit{n}_{\mathrm{a}}}{\mathit{n}_{\mathrm{g}}} (1 - (\tilde{\mathsf{X}}_{\mathrm{a}}^{\mathrm{T}} \tilde{\mathsf{n}})^{2})}\right)}_{=:b} \tilde{\mathsf{n}}$$

$$= a\tilde{X}_a + b\tilde{n}$$


Normalized ray in glass:
$$\tilde{X}_{g} = \frac{X_{g}}{||X_{g}||_{2}}$$

Starting point on outer glass plane:
$$X_s = \frac{d}{\tilde{X}_a^T \tilde{n}} \tilde{X}_a + \frac{d_g}{\tilde{X}_g^T \tilde{n}} \tilde{X}_g$$

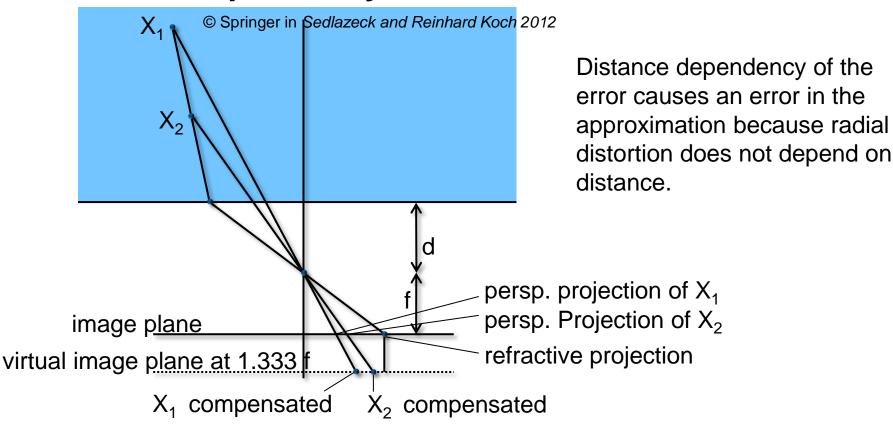
Axial Camera



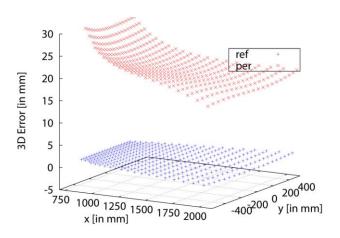
All rays intersect common axis defined by interface normal and center of projection

Approximating Refraction with Pinhole Camera Model

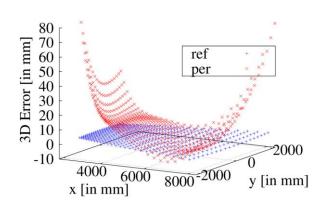
perspective approximation:


- focal length
- radial distortion
- principal point

Refraction can be approximated with the perspective camera model by allowing the intrinsics and extrinsics to absorb the effect to some extend



Distance Dependency of Error



Perspective Projection Approximation Error

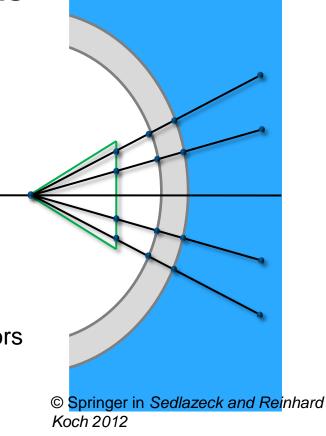
distance: 1000 mm

distance: 4000 mm

Plane Triangulation:

- refractive
- perspective

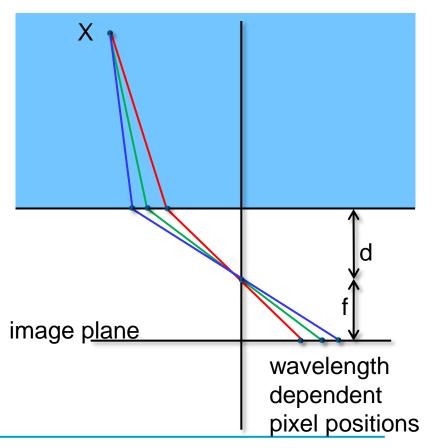
Triangulation errors for plane triangulation. In case of explicitly modeling refraction, the error is zero. The error of the perspective approximation depends on distance and pixel position.

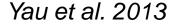

Interesting Alternative: Dome Ports

Spherical glass: single viewpoint in center of dome

Challenges:

- More difficult to make, expensive
- nSVP and strong distortions for decentering errors
- error smaller compared to flat port
- dome acts as lens itself => focus issues

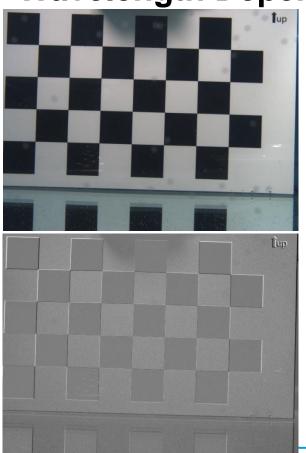


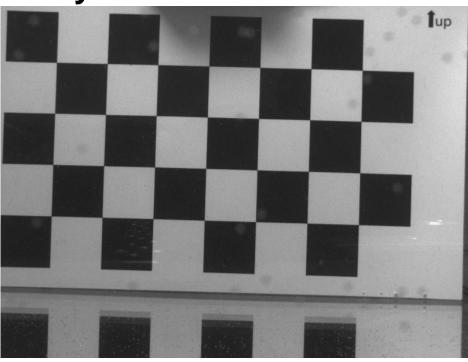


Wavelength Dependency

- indices of refraction are wavelength dependent -> different color channels
- can be observed in images
- Yau et al.2013 use active calibration target with blue and red colors
- need to calibrate chromatic aberrations of lens
- helps to make calibration more robust

Wavelength	Index of refraction water
660 nm	1.33151
589 nm	1.33344
405 nm	1.34318





Wavelength Dependency

upper left: original image

lower left: difference image of red and blue channel

right: red and blue color channels

References

- E. Hecht. Optik. Oldenburg Verlag München Wien, 2005.
- C. D. Mobley. Light and Water: Radiative Transfer in Natural Waters. Academic Press, 1994.
- R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision (Second Edition). Cambridge University Press, second edition, 2004.
- T. Treibitz, Y. Y. Schechner, and H. Singh. Flat refractive geometry. In Proc. IEEE Conference on Computer Vision and Pattern Recognition CVPR 2008, pages 1–8, 2008.
- A. Agrawal, S. Ramalingam, Y. Taguchi, and V. Chari. A theory of multi-layer flat refractive geometry. In CVPR, 2012.

References

- A. S. Glassner. Principles of Digital Image Synthesis. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1994.
- C. Kunz and H. Singh. Hemispherical refraction and camera calibration in underwater vision. In OCEANS 2008, pages 1–7, 15-18 2008.
- A. Jordt-Sedlazeck and R. Koch. Refractive structure-from motion on underwater images. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 57–64, 2013.
- J.-M. Lavest, G. Rives, and J.-T. Lapresté. Underwater camera calibration. In ECCV '00: Proceedings of the 6th European Conference on Computer Vision-Part II, pages 654–668, 2000.

References

- J. G. Fryer and C. S. Fraser. On the calibration of underwater cameras. The Photogrammetric Record, 12:73–85, 1986.
- T. Yau, M. Gong, Y.-H. Yang. Underwater Camera Calibration Using Wavelength Triangulation, Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on , vol., no., pp.2499,2506, 23-28 June 2013
- P. Sturm, S. Ramalingam, and S. Lodha. On calibration, structure from motion and multi-view geometry for generic camera models. In K. Daniilidis and R. Klette, editors, Imaging Beyond the Pinhole Camera, volume 33 of Computational Imaging and Vision. Springer, aug 2006.
- S. G. Narasimhan and S.K. Nayar. Structured light methods for underwater imaging: light stripe scanning and photometric stereo. In Proceedings of 2005 MTS/IEEE OCEANS, volume 3, pages 2610–2617, September 2005.

Further Reading

L. Kang, L. Wu, and Y.-H. Yang. Experimental study of the influence of refraction on underwater three-dimensional reconstruction using the svp camera model. Appl. Opt., 51(31):7591–7603, 11 2012.

Sedlazeck and R. Koch. Perspective and non-perspective camera models in underwater imaging - overview and error analysis. In Outdoor and Large-Scale Real-World Scene Analysis, volume 7474 of Lecture Notes in Computer Science, pages 212–242. Springer Berlin Heidelberg, 2012.

M. D. Grossberg and S. K. Nayar. The raxel imaging model and ray-based calibration. International Journal of Computer Vision, 61(2):119–137, 2005.

M. Johnson-Roberson, O. Pizarro, S. B. Williams, and I. J. Mahon. Generation and visualization of large-scale three dimensional reconstructions from underwater robotic surveys. Journal of Field Robotics, 27, 2010.

Wrap Up

- · perspective camera model
- models imaging geometry with focal length, etc. and camera pose
- refractive camera for underwater case required
- refractive 3D-2D projection computationally expensive, but virtual camera error is efficient
- approximating refraction with perspective camera causes distance dependent, systematic modeling error

