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Abstract

Macro photography is characterized by a very shallow
depth of field, which challenges classical structure from mo-
tion and even camera calibration techniques, since images
suffer from large defocussed areas. Computational photog-
raphy methods such as focus stacking combine the sharp ar-
eas of many photos into one, which can produce spectacular
images of insects or small structures. In this contribution
we analyse the camera model to describe such focus stacked
images in photogrammetry and computer vision and derive
a camera calibration pipeline for macro photography to en-
able photogrammetry and 3D reconstruction of tiny objects.
We demonstrate the effectiveness of the approach on ray-
traced images with ground truth and real images.

1. Introduction

Macro photography is defined as extreme close-up pho-
tography [7], in which the object’s image on the sensor is
larger or equal than the object’s size in 3D [15]. In a broader
sense, macro photography is concerned with photographing
tiny objects in the micrometer to millimeter range and has
a multitude of applications in life sciences and technology,
but is also popular in art and among photographers, since
it typically produces images from unconventional perspec-
tives (e.g. close-up of insects). Due to the relative proxim-
ity of the object to the aperture, the special setting suffers
from optical effects such as diffraction and defocus that in-
fluence lateral resolution and depth resolution and make 3D
computer vision and photogrammetry in the micro world
very challenging. When using large apertures (small F-
numbers), lenses collect a lot of light, but only a very lim-
ited depth range is ”in focus”, which lets large parts of the
image appear unsharp (”out of focus”). This limited depth
of field (DOF) makes it difficult to find correspondences be-
tween different object poses (see Fig. 1 for a challenging
reconstruction setting). Reducing the aperture size limits

*These authors contributed equally to this work.
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Figure 1. Calibrated focus stacked 3D macro-reconstruction of a
tiny bud from series of shallow depth of field macro photos.

the amount of light collected by the sensor, but increases
the depth of field. However, due to the effect of diffraction,
using a small aperture leads to reduced image resolution.
The diffraction-barrier is governed by fundamental laws of
physics, and thus can not easily be overcome by changing
the lens or aperture design. It can already be observed in
normal scale images, however, its impact is significantly
higher in the macro-scale, where a careful trade-off has to
be made between image resolution and DOF (cf. Fig. 2).

A common way to deal with this trade-off is to com-
bine the pixels of multiple shallow DOF images into one
by focus stacking [2]. However, when combining pixels
from different images into one virtual image, it remains un-
clear what the virtual camera model for such an image is
(cf. to [8]) and how camera intrinsics such as lens distor-
tion can be properly considered in photogrammetric and
3D vision applications. In this paper, we propose a way
to calibrate macro lenses and analyse the common focus
stacking camera geometry as originally introduced in [2].
Specifically, we contribute the following: We (i) show that
a focus-stacked image can be described by an affine camera
model, and how the pinhole camera parameters of the origi-
nal camera are related to the affine camera model for a focus
stacked image. We (ii) propose a novel cascaded chessboard
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Figure 2. Impact of the diffraction effect shown on the AF-1951
chart: As the f-number increases, the aperture decreases. The res-
olution reaches 114 lp/mm at aperture f/8. With even smaller
apertures, the resolution becomes insufficient. Left two columns:
show the evaluation setup; the remaining right three columns
show the green patch magnified in the different conditions.

corner localization approach on image stacks. It utilizes a
focus stacked image (with extended DOF) for detecting the
chessboard and propagates the corners into the source im-
ages, where we apply sub-pixel refinement on the sharp re-
gions of the particular shallow DOF images. We further use
finding (i), to (iii) extract parameters for the macro camera
model from the affine camera parameters of a single stacked
image in closed form. We show that those can be used as
initial values for maximum-likelihood estimation (MLE) in
a multi-view perspective camera calibration approach, op-
erating on the corner observations from (ii) in the largely
defocused images. To facilitate further research, (iv) cali-
bration code and datasets will be made available online. 1

2. Previous Work

There is a huge body of related work with respect to
macro photography and we refer the reader to [20, 7, 15]
for an overview and insights into the main ideas. In gen-
eral, cameras need to have a large enough aperture to col-
lect enough light, but the larger the aperture, the smaller the
depth of field will become. In this context Hasinoff et al.
[14] provide a detailed analysis of the exposure time trade-
offs. While in principle it is possible to photograph with
a very small aperture to maximize the depth of field [20],
diffraction effects [3] limit the resolution (see Fig. 2), so to
maximize spatial resolution a limited depth of field is typ-
ically accepted. Typically, macro photography is used in
certain 2D applications that do not require a large DOF or
3D applications that require less precision [18, 4].

When using techniques such as depth-from-focus [12]
or depth-from-defocus [23] the limited DOF can be even
turned into an advantage. In depth-from-focus approaches
multiple images are taken with different parts focused in or-
der to infer their distance (see e.g. [9] for an early compari-
son of different methods). Such a stack of images with dif-

1https://www.geomar.de/en/omv-research/
macro-and-micro-photogrammetry

ferent parts in focus can also be used to create one merged
image that contains the sharp parts of all the ”sub-images”
by using a sharpness measure (e.g. the modified Laplacian
[16]) on each input image [2]. Several improvements exist
to avoid artefacts when compositing multiple images into
one focus-stacked image (see e.g. [8, 24]). To bring dif-
ferent object parts into focus, the two main principles are
to move (or modify) the lens with respect to the chip, or to
move the entire camera relatively to the object. In this paper
we consider only the second case, which keeps the intrinsics
of the camera, which we want to calibrate, constant. Due to
the extremely small DOF in the close-up focusing, manual
or automatic micrometer platforms are generally used for
extended depth of field (EDOF) techniques [5].

In order to use cameras for 3D vision and photogram-
metry applications, the relation between pixels in the image
and rays in the camera coordinate system must be known,
which can be solved by calibration [6] and the classical cal-
ibration approach involves presenting a known target to a
camera multiple times, and then solving for the fixed intrin-
sics and varying extrinsics of all poses [25]. Calibration
parameters can also be obtained by self-calibration from
an unknown scene (see e.g. [10, 19] for early works).
When using reconstructions of many images with nicely
distributed features, state-of-the-art structure-from-motion
systems such as [21] can also read approximate calibration
information from image meta data and optimize calibration
parameters in bundle adjustment [1]. Therefore, it is possi-
ble in principle to pass macro photography images directly
to 3D reconstruction systems [22, 11] using self-calibration.
However, there are degenerate cases for self calibration e.g.,
when scene structure, camera motion or distribution of ob-
servations is not general enough, which leaves some ambi-
guities between the parameters and can lead to skewed or
biased reconstructions [13].

For shallow DOF images that sometimes show only a
narrow corridor, or ring structure, of features which are in
focus, we argue that one should avoid these ambiguities and
pre-calibrate the camera beforehand to avoid potentially bi-
ased or skewed 3D models. To the best of our knowledge,
calibrating a shallow DOF camera that cannot take an all-
in-focus image of the calibration target has not been done
before. Additionally, the authors are unaware of work that
analyzes the geometric camera model for focus-stacked im-
ages, which is what we will derive in the next section.

3. Focus Stacking Revisited
Notation We will write elements of projective space up-
right with serifs (e.g. x ∈ P2, or X ∈ P3), the correspond-
ing Euclidean vectors (e.g. x ∈ R2, or X ∈ R3) are dis-
played in italics.

Let us assume we have a chessboard, and we attach a
coordinate system such that the x- and y-axis coincide with

https://www.geomar.de/en/omv-research/macro-and-micro-photogrammetry
https://www.geomar.de/en/omv-research/macro-and-micro-photogrammetry
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Figure 3. Geometry, notation and transformations of the jth stack.
We observe a 3D point Xh on a chessboard with the jth stack,
comprised of sub-images I0,j , · · · , Ii,j , · · · , In,j . They can be
focus-stacked into a stack specific image Ĩj . It serves as the basic
interface of our approach by allowing for an affine transformation
A between the stacked and a perpendicularly taken image Ī.

the row and column directions on the board, and all points
on the board share the property z = 0, i.e. the z−axis is per-
pendicular to the chessboard. We position a pinhole cam-
era in front of the board, viewing from some oblique, non-
aligned angle. The pinhole camera’s projection matrix P0

can be described by P0 = K
(

RT | − RTC0

)
. The cam-

era’s orientation in the above chessboard coordinate system
is characterized by the rotation matrix R = (h v a), with
h,v,a ∈ R3 being the direction of the horizontal image
axis, the vertical image axis and the optical axis respec-
tively. In case we have a shallow DOF, we now move the
camera stepwise forward (typically on a motorized or man-
ual linear stage) to take a series of images with different dis-
tances to the object, while keeping orientation and intrinsics
constant:

Pi = K
(

RT | − RTCi

)
, (1)

where Ci = C0 + λia and λi encodes the magnitudes of
the forward step from the start position C0

2. We call each
of these images a sub-image of the stack of images for a par-
ticular object pose. Since intrinsics and focus of the lens are
kept constant, in all these images, only those points appear
sharp which are inside3 the focus plane at distance d with

2Throughout the paper, we assume that the forward stacking motion
axis is aligned with the optical axis, which is reasonable in a carefully
crafted macro camera setup. However, it can also be included easily in
the optimization. Please see Sect.1 of the supplementary material for an
in-detail discussion of the misalignment issue

3In practice, not only exactly one plane is in focus, but the DOF covers a
range with decreasing image sharpness when moving away from the focus

respect to the camera. We can imagine that the focus plane
sweeps over the object when we move the camera forward.
A point X in space is projected into the ith image as xi:

xi = Pi X = K
(

RT | − RTCi

)
X (2)

Substituting R and Ci, and since h,v,a are orthogonal:

xi = K

 hT −hTC0

vT −vTC0

aT −aTC0 − λi

 X (3)

We now synthesize a new focus-stacked image Ĩ of the
same dimension as the original image, where we pick from
each of the input images Ii only the sharp pixels, i.e. those
that were in the focus plane at distance d relative to the cam-
era4:

Ĩ(x) := Ii(x) with (0 0 1)PiX = d and x = PiX
(4)

for some 3D scene point X (with Euclidean representation
X). The corresponding image pixel is therefore picked
from the ith image, iff

aTX − aTC0 − λi = d (5)

Plugging this into equation 3 provides its position in the
focus-stacked image:

x̃ = K

 hTX − hTC0

vTX − vTC0

d

 (6)

Consequently, the focus stacked image is represented by the
affine camera

P̃ = K

 hT −hTC0

vT −vTC0

(0 0 0) d

 (7)

The focus stacking therefore removes the perspective ef-
fects and creates a parallel projection instead.

Transformation Between Chessboard and Image Plane

We now observe a chessboard (in the z = 0 plane, as de-
fined earlier) and again capture a series of sub-images, given
a particular camera pose. We later refer to the ith sub-image
of the jth stack (chessboard orientation) as image Ii,j . The
chessboard contains a number of 3D points Xh at the cor-
ners, whose projection to the ith sub-image of the jth stack

plane. As long as the unsharpness effects are not noticable, e.g. far below
one pixel, also points at those distances appear sharp. However, for the
sake of deriving the model we concentrate on the sharpest points.

4Note that focus stacking algorithms for creating beautiful images can
do extra blending, de-ghosting, warping or other non-linear operations, but
here we consider only basic focus stacking for our camera calibration.
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is xhi,j (cf. Fig. 3). For the sake of readability we omit
stack indices j, as well as point indices h, wherever we dis-
cuss generally valid relations that do not refer to a particular
point or stack. For instance, coordinates of the chessboard
are mapped to image coordinates as follows

x̃ = K

 hT −hTC0

vT −vTC0

(0 0 0) d

 (k l 0 1)
T (8)

Omitting the z = 0 column, we obtain a 3×3 homography
matrix, which is actually an affine mapping:

x̃ = K

 hx hy −hTC0

vx vy −vTC0

0 0 d

 (k l 1)
T (9)

Substituting K with

K =

 f cx
f cy

1

 , (10)

we obtain

x̃ =
f

d

(
hx hy
vx vy

)
︸ ︷︷ ︸

A

(k l)
T

+
f

d

(
−hTC0

−vTC0

)
+

(
cx
cy

)
︸ ︷︷ ︸

o
(11)

This equation describes how a point (k, l) on the chessboard
is mapped into the focus stacked image Ĩ by an affine trans-
formation. The first part A is responsible for the shape, ori-
entation and scale of the pattern, the second part o affects
only the position in the image (offset).

Affine cameras are independent of translations if the rel-
ative coordinates, with respect to a given reference point,
are used both in space and in image [19] and we can simply
subtract a reference point x̃r (e.g. top left corner) to obtain
an equation without o. Therefore, points on the chessboard
relative to the reference point in the focus stacked image are

x̂ =
f

d

(
hx hy
vx vy

)
︸ ︷︷ ︸

A

(
k̂ l̂
)T

, (12)

with x̂ = x̃− x̃r and (k̂, l̂) = (k − kr, l − lr). The matrix
A can be readily measured from the image: Its columns are
simply the image space vectors for a horizontal chessboard
step and a vertical step, respectively (see also Fig. 3).

4. Macro Lens Calibration
After having analyzed the macro setting, we now turn to

estimating the camera’s parameters. The overall approach
lends from classical camera calibration [25] and takes sev-
eral images of a chessboard for which the internal camera

parameters are optimized, jointly with the individual cam-
era poses. However, since in each image we can observe
only a fraction of the chessboard due to limited DOF, we
capture an entire series of sub-images for the pose that differ
only in a camera forward movement by a few micrometers
each (as can be seen in Fig. 3). We stack those images into
an all-sharp focus stacked image, in which we can detect
the board, but which suffers from parallel projection as out-
lined in the previous section, nevertheless this is useful for
predicting corner positions in the sub-images. The focus-
stacked image also provides partial calibration information
such as the magnification f/d and information about the
chessboard orientation (h,v), which we extract and use as
initialization for optimizing all parameters.

4.1. Focus Stacking of Chessboard Sub-images

For each individual camera pose, in order to obtain the
focus stacked image containing all the sharp corners posi-
tions, we proceed like this: Since our objects are black and
white chessboards, we do not need to reason about depth
discontinuities and can stick to a simple approach: We com-
pute the modified Laplacian [16] at each pixel position in
each sub-image. Afterwards, at each image position we se-
lect the pixel with the highest Laplacian response at this
position among all sub-images and copy its intensity value
into the focus-stacked image. We also store from which im-
age we took the respective pixel.

4.2. Detection of Chessboard Corners

Each chessboard sub-image contains a lot of blur in the
unsharp areas which hinders direct detection of the chess-
board. As detection of partial chessboards from the sub-
images seems complicated we utilize the focus-stacked im-
age as a prediction: First we run chessboard detection on
the focus stacked image. For difficult cases such as strong
artifacts due to our simple focus stacking, this step can be
supported by clicking the four outermost corners and pre-
dicting, followed by a local search in the focus-stacked im-
age. Once all corners are found in the focus-stacked image
we leverage the fact that each pixel originated from one of
the sub-images, and we predict the corner positions in the
resp. sub-images. In order not to change the position of
the corner points, no post-processing is performed on the
sub images. Rather we do a local corner search around the
predicted position. We also predict the corner in the neigh-
boring sub-images and search for the precise position. This
way we obtain a set Sij of detected corners for each sub-
image in each chessboard pose.

4.3. Initial Camera Calibration from a Single Stack

Focal Length and Rotation Matrix from Affine Camera
From equation 11 it can be seen that the apparent deforma-
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tion and scale of the chessboard is caused by the matrix

A =
f

d

(
hx hy
vx vy

)
(13)

The image offset vector obtained when moving a horizontal
step (1 0) on our chessboard, is therefore f

d (hx vx) (and
for a vertical step: fd (hy vy)). Let V = A · AT:

V =

(
f

d

)2(
h2x + h2y hxvx + hyvy

hxvx + hyvy v2x + v2y

)
(14)

Since h,v are orthonormal we obtain

V = µ

(
1− h2z −hzvz
−hzvz 1− v2z

)
, (15)

where µ = (f/d)2. When solving equation 15 for µ, re-
sults in a 4th-degree polynomial, where 4 solutions are ob-
tained, but 2 of them are duplicated. Once f/d is known,
hx, hy, vx, vy can be readily computed from the affine trans-
formation A as shown in equation 13. Next we have

hz = ±
√

1− h2x − h2y and vz = − V10
hzµ

, (16)

where V10 is the lower-left element of matrix V. Therefore,
the third rotation vector can be computed as a = h×v. The
so-computed matrix R = (h,v,a) may be noisy and hence
not be a proper rotation matrix, but orthonormality can be
enforced e.g. through singular value decomposition. The
rotation obtained only serves as a start value for optimiza-
tion in the next section. We assume the focus distance d is
roughly known (e.g. a few centimeters) as it is practically
needed to position the object at a reasonable distance. Then
the focal length can be computed as f = d

√
µ. This also

only serves as an initial guess for the subsequent optimiza-
tion.

So far, we have solved the focal length of the camera and
the rotation matrix from one focus stacked image. However,
as can be seen, we obtained 2 solutions when solving µ and
each solution leads to another 2 rotation matrix solutions
when solving hz from equation 16. We hence prune the so-
lutions which are geometrically infeasible, which leaves us
with a two-fold pose ambiguity that can be resolved using
the coarse relative depth information of the corners (depth-
from-focus). In the next subsection, we will use all solu-
tions to solve for the principal point of the camera and the
translation vector.

Solving Principal Point and Translation from Homog-
raphy Since the affine camera removes the perspective
effects, the camera translation is not fully constrained by
equation 11. Therefore, we turn to use one of the sub-
images to recover the camera translation t as well as the

principal point (cx, cy). Since the ith sub-image is taken by
the perspective camera at a forward step of distance λi, it
satisfies equation 3. And also the 3D point which the cam-
era is observing has z = 0, implying that we can remove the
z = 0 column of the projection matrix. Now, as the focal
length f and the rotation matrix R have been computed, we
can expand equation 3:

Hi =


fR00+cxR20

tz−λi

fR01+cxR21

tz−λi

ftx
tz−λi

+ cx

fR10+cyR20

tz−λi

fR11+cxR21

tz−λi

fty
tz−λi

+ cy

R20

tz−λi

R21

tz−λi
1.0


(17)

where t = (tx, ty, tz)
T = −RTC0. For initialization pur-

poses, we assume that the step size of the camera forward
stacking movement is known (as it is usually provided by
the motorized or manual linear stage) and therefore λi is
given. Now, the camera translation and the principal point
can be solved sequentially.

Note that, when solving vz from equation 16, hz should
not be equal to 0 (optical axis of camera perpendicular or
parallel to board), but these special cases can be easily iden-
tified and addressed.

4.4. Maximum-Likelihood Estimation of All Cali-
bration Parameters

Since we assume that the coarse focus distance d and the
forward stacking step size is known when solving for cam-
era calibration parameters, they can only be considered as
starting values. In this section, we describe a corresponding
optimization procedure to optimize all calibration parame-
ters using all sub-images at the same time.

Different from the classical camera calibration approach
[25], this paper not only estimates the intrinsics of the cam-
era but also the forward stacking movement of each sub-
image. Assume the camera observes the chessboard at m
different poses, then the camera takes n sub-images in a
forward stacking motion at each pose.

Suppose there are l chessboard corners identified in the
sharpest region of the image, then we seek to minimize the
following energy function:

E(Θ) =

n∑
i=0

m∑
j=0

∑
h∈Sij

‖xhi,j − π(Xh,K,Rj ,Ci,j)‖2

(18)
where xhi,j the observation in ith sub-image of jth stack
of the hth corner Xh of the 3D calibration board. As
we do not observe all corners in all sub-images, Sij de-
notes the set of sharp observations in sub-image ij. Next,
π(Xh,K,Rj ,Ci,j) is the perspective projection equation
and Ci,j = C0,j + λiaj , where aj is the 3rd column of
rotation matrix Rj . Note that instead of the simple calibra-
tion matrix K, obtained from the closed form solution, we
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Figure 4. Camera model parameter estimation on synthetic data avg’d over 100 runs and subject to increasing noise. Left: AVG./STD.
error of f relative to GT, and AVG./STD. absolute error of cx and cy . Left, top: Close-form initialization result. Left, bottom: Optimized
result. The colorfill indicates one STD. Please note the different scales on the y-axis. Right, top: mean estimation error of λi binned into
0.005 mm error ranges. Right, bottom: STD. of the λi estimates with same binning.

here optimize the parameters of a more generic function K
with the same meaning as K (mapping from rays to im-
age positions), but utilizing more generic parameters such
as distortion (with distortion parameters initialized as 0).

The MLE is obtained using the Levenberg-Marquardt al-
gorithm (Ceres-Solver [1]). 5

5. Evaluation
The evaluation is conducted on synthetic data and real-

world images acquired by a macro lens camera system. The
synthetic evaluations are twofold: First, numerically sim-
ulated projections of 3D points by a macro lens camera
with perfectly known ground truth and noise models are em-
ployed. This helps us to validate the proposed macro lens
camera calibration approach and to evaluate the accuracy
and robustness against noise. The second type of synthetic
data is synthesized by ray-tracing, simulating a perspective
camera with a thin lens. Thus, we can investigate the paral-
lel projection effect in the focus stacked images and evalu-
ate camera calibration in the presence of uncertainty in cor-
ner detection and a simulated DOF.

Evaluation on Numerical Simulations First, we simu-
late a macro-scale chessboard with square size of 1mm ×
1mm observed by a perspective camera with a macro lens
(focal length f = 6450.0 pixels, principal point (cx, cy) =
(1032.0, 688.0) pixels, focus distance d = 45mm) under
forward focus stacking movement. The step size of each

5Note that in the perspective projection equation, we also include the
lens distortion parameters, for more details about distortion parameters, we
kindly refer interested readers to [13].

forward movement is 0.02mm and only the 3D calibration
targets that are inside the DOF of the camera will be pro-
jected to the corresponding sub-image. Later on, zero-mean
Gaussian noise with σ ∈ {0.0, 0.2, . . . 2.0} pixels is added
to each simulated projection.

We perform 100 calibration trials on each noise level us-
ing the closed-form solution as described in Sect. 4.3. Af-
terwards, we perform optimization on the parameters and
obtain the optimal values. For each trial, the step size of
the forward stacking movement is initialized as 20 % off
from the ground truth, and we add Gaussian noise to the
focus distance d with noise level of σ = 20 % of ground
truth d. Estimation errors for each calibration parameter
are recorded and results are displayed in Fig. 4. As can
be seen we obtained a good estimate of f and cy from the
closed-form solution, however, cx deviates from the GT so-
lution with increasing noise. Nevertheless, the optimization
brings all the parameters back to the optimal state. It is ev-
ident that the calibration approach produces high accuracy
camera intrinsic calibration as well as focus stacking move-
ments despite a high noise level.

Evaluation on Ray-Tracing Data Then we basically
keep all the simulation setups the same but render photo-
realistic images with de-focus effect using the ray-tracing
software Mitsuba2 [17]. Here, the thin-lens perspective
camera with aperture of 1.425mm is employed to create
a de-focus effect. Sample sub-images are shown in Fig. 3
(middle row). The estimated focal length is fx = 6448.79
pixels, the principal point is (cx, cy) = (1031.92, 687.395)
pixels, which is nearly the ground truth, and the reported
reprojection error is 0.051 pixels. Two sub-images with
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Reference Ours Self Calib.

Figure 5. To verify the calibrated intrinsics, we draw 4 straight lines connecting the outer 4 corners to evaluate the straightness of lines after
undistortion. Left: the original reference image; Middle: the undistorted image using the calibrated intrinsics; Right: undistorted image
using self-calibration during bundle-adjustment. Each right column shows the zoomed details of the respective condition.

Figure 6. First two columns: Reprojection results are shown in
red squares and measured corners are shown in green crosses.
Left: Ray-tracing synthetic data. Right: Real-world data . Top
row: Reprojection from the chessboard to the focus stacked image
using reconstructed affine transformation. Bottom two: Reprojec-
tion from the chessboard to two of the sample sub-images. Right-
most column: Real-world evaluation experimental platform. The
camera is mounted on a vertical focus stacking rail. A ring LED is
fixed on the front section of the lens. XY-micrometer and mechan-
ical arms constitute the loading platform. A drive box controls the
movement of the rail and triggers the camera.

drawn reprojection results and measured chessboard cor-
ners are shown in Fig. 6 (left, bottom). Next, to evaluate
the estimated camera intrinsic parameters and also to verify
the affine transformation model for the focus stacked im-
age, we reconstruct the affine transformations using the es-
timated parameters and project 3D chessboard corners onto
all focus stacked images (one of them is shown in Fig. 6 left,
top). The resulting mean reprojection error is 1.179 pixels,
which is in agreement with the focus stacked images.

Real-World Evaluation To verify the effectiveness of the
method, a real-world evaluation including resolution tests
under different apertures, a real macro lens camera calibra-
tion and an SfM evaluation was carried out.

The image acquisition platform is shown in Fig. 6. This
platform (WeMacro) can acquire vertical-up-to-down focus
stack image sequences and triggers the shutter automati-
cally. The rail is driven by a stepping motor, and the mini-
mum step size of the movement is 0.001mm, with no accu-

Method fx fy cx cy

Ours 8087.03 8083.17 1162.1 764.99
Self Calib. 10142.81 10111.64 1032.00 688.00
Method k1 k2 p1 p2

Ours 0.935 -0.576 0.013 0.021
Self Calib. -1.915 63.405 -0.068 0.114

Table 1. Calibration results used in the evaluation in Fig. 5.

mulative error, which can ensure that the relative position of
each stack movement can be repeated after a calibration of
the backlash error of the rail. A Nikon D850 camera with
a Laowa 25mm f/2.8 2.5-5X Ultra Macro lens is used as
the macro lens camera system. The object platform com-
bines an XY-micrometer with mechanical arms that ensure
that the specimen is located in the field of view of the cam-
era. The employed macro-scale chessboard has a square
size of 0.5mm × 0.5mm and is printed using photolithog-
raphy technology with a printing accuracy of 0.001mm.

Resolution Evaluation First, an AF-1951 chart is used to
evaluate the center and boarder resolution of the image at
different apertures (cf. Fig. 2). Reproduction ratio on the
lens is set to be 2.5. As a compromise between number of
sub-images needed and spatial resolution, we chose aper-
ture f/8 with a reported DOF of 0.257mm.

Calibration Evaluation Next, we evaluate the proposed
macro lens camera calibration approach using the above de-
scribed system. We first set the step size of the motorized
linear stage to 0.15mm, and then place the macro-scale
chessboard approximately at 54mm in front of the cam-
era, which is also the focus distance of the camera sys-
tem. Afterwards, we take 6 stacks of images where each
stack contains 47 sub-images. For each stack, we change
the chessboard pose and we try our best to maximally ro-
tate the chessboard while keeping it inside both the field of
view and the extended DOF of the camera. Two sample
sub-images from one of the stacks can be found in Fig. 6
(right, bottom), and the focus stacked image from this stack
is shown in the top row. Finally, the proposed calibration
approach is applied to the captured dataset, which yields a
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Figure 7. Calibration of the forward stacking step sizes for the real
macro lens camera. The reference stacking step size is 0.15mm,
and the motorized stepping accuracy is 5% of the step size (7.5µm
in this case). The latter is indicated by the blue error fill.

mean reprojection error of 0.20 pixels. The resulting intrin-
sics are shown in Tab. 1. In addition to that, the calibrated
forward stacking step sizes are shown in Fig. 7, the esti-
mated step sizes are almost perfectly in agreement with the
manufacturer’s specification.

To verify the calibrated camera intrinsic parameters, we
place the chessboard frontal parallel to the camera lens, and
take an independent photo once the chessboard is entirely
brought in focus. Then we undistort the photo with esti-
mated intrinsic parameters. As shown in Fig. 5, the original
image is shown with distortion and the chessboard corners
in between each of the two corners do not align along the
line. After undistortion using our parameters it is evident
that straight lines are depicted straight. Next, we use one
of the focus stacked images to re-estimate the affine trans-
formation between the 3D chessboard plane and the corners
on the focus stacked image, and this time we re-calculate
the focus distance d out of the affine transformation. The
re-calculated focus distance is 54.51mm which is in agree-
ment with the hand-measurement. Afterwards, we use the
re-calculated focus distance, the estimated camera intrin-
sics together with the estimated stack poses to reconstruct
the affine transformations for the other stacks (the stack
used for re-calculating focus distance is excluded). With the
reconstructed affine transformations, we project 3D chess-
board corners onto each of the focus stacked image and
compute the mean reprojection error over all stacks. The
reprojection error is measured as 3.15 pixels and one sam-
ple focus stacked image with reprojection results is shown
in Fig. 6 (top, middle). This is a reasonable result given
that lens distortion and the forward stacking motion offset
are not considered in the affine transformation.

For comparison, we also run self-calibration using a
state-of-the-art SfM [21] software on 22 poses each con-
taining 46 sub-images (1012 images in total) of the bud of
Fig. 1. Due to the shallow DOF only 15% of the images
were registered when producing a 3D model of the bud
(not shown). We obtain the intrinsic parameters shown in
Tab. 1, which we also use for undistorting the chessboard

photo. The undistorted image is displayed in Fig. 5 (right),
which shows that the estimated radial distortion is quite
off, as compared to our calibration-target-based method, al-
though registration succeeded for many images. It also indi-
cates that self-calibration-SfM based reconstruction might
be skewed, since it is not using correct intrinsics.

Application: Structure from Motion Finally, we rerun
the reconstruction, but this time enforcing to use our cali-
bration, and we obtain the 3D model as presented in Fig.
1. In this paper, we focus on the calibration leaving a de-
tailed evaluation and comparison of 3D macro SfM to future
work. However, this result already shows that our calibra-
tion is useful for 3D reconstruction of tiny objects.

6. Conclusion

When maximizing spatial image resolution as often de-
sired in macro photography, the shallow DOF hinders clas-
sical camera calibration. We have shown that when combin-
ing multiple images into one by focus stacking, this means
that this focus stacked image actually obeys an affine cam-
era model. We have derived a closed-form solution to ex-
tract focal length, principal point and board orientation from
an image of a chessboard and proved on synthetic data that
the algorithms are robust to noise and that the results are
suitable to initialize a maximum-likelihood camera parame-
ter estimation using partial chessboard observations in mul-
tiple views. For this we have devised a chessboard corner
detection strategy that also employs the focus-stacked im-
age as a prediction. We have then calibrated a real macro
lens and show consistent and plausible results comparing
to the manufacturer’s data sheet, and image undistortion
with the obtained distortion parameters produces straight
lines, whereas parameters obtained through self-calibration
using generic SfM software did not. Future work will in-
vestigate applicability of the system to shallow DOF mi-
croscopy, for which the corner detection strategy seems al-
ready readily usable. We think that using calibration infor-
mation from known targets can strongly improve 3D recon-
struction of micro objects in cases (close to) degenerate for
self-calibration and where currently no other calibration ap-
proach exists.
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