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Rocks in the Earth are not homogeneous, but consist of different mineralogical phases with 
different rheological properties. When deformed, these heterogeneous rocks therefore also 
exhibit heterogeneous deformation, which depends on the rheological contrast between the 
different phases and their distribution within the rock. The effective properties of such 
heterogeneous mixtures have received a significant amount of attention in the past [Treagus, 
2002; Madi et al., 2005; Jessell et al., 2009; Dabrowski and Schmid, 2012; Kaercher et al., 
2016], but the statistical properties of deformation-related fields such as stress and strain rate 
have not yet been studied in detail.  
Here we use a numerical approach to gain insight into the relationship between phase 
distribution topology and deformation-related fields. To this end, we prescribe the distribution 
of weak phases is using random fields and deform the resulting structures in simple shear. 
The usage of random fields allows us to prescribe a certain topology of the weak phase and 
to investigate its effect on bulk properties as well as stresses, strain rates and pressures.  
Adding a weak phase has several effects: First, the internal strain rate, stress and pressure 
fields become strongly heterogeneous, thus resulting in at times unexpected behavior and 
localization of deformation. Second, the bulk rock is weakened. The amount of weakening 
strongly depends on the topology of the weak phase as well as on its rheology.  
We performed a large number of simulations for different viscosity contrasts, volume fractions 
and weak phase topologies to obtain the desired amount of data needed for statistical 
analysis of bulk rock deformation properties. Results show that stress and strain rate 
distributions are strongly dependent on all of those properties. We also find that the transition 
between the load bearing framework (LBF) and the interconnected weak layer (IWL) end 
members is relatively sharp and exhibits a behavior similar to a percolation threshold. 
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Figure 2: Deformation of  a two-phase 
material  in pure shear. Shown are phase 
distribution (top left), strain rate distribution (top 
right) and histograms of strain rate for both the 
strong and the weak phase (bottom). Strain rates 
are nondimensionalized with the background 
strain rate. 
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