Late Pliocene variations of the Mediterranean outflow

Nabil Khéli, Michael Sarntein, Martin Frank, Nils Andersen, Dieter Garbe-Schönberg

A R T I C L E I N F O

Article history:
Received 8 June 2013
Received in revised form 10 June 2014
Accepted 23 July 2014
Available online 8 August 2014

Keywords:
Pliocene
Onset of major Northern Hemisphere Glaciation
Mediterranean Sea
Mediterranean Outflow Water
North African aridification
Atlantic Meridional Overturning Circulation
Intermediate waters

A B S T R A C T

Late Pliocene changes in the advection of Mediterranean Outflow Water (MOW) derivates were reconstructed at northeast Atlantic DSDP/ODP sites 548 and 982 and compared to records of WMDW at West Mediterranean Site 978. Neodymium isotope (ε_{Nd}) values more positive than ~10.5/−11 reflect diluted MOW derivates that spread almost continuously into the northeast Atlantic from 3.7 to 2.55 Ma, reaching Rockall Plateau Site 982 from 3.63 to 2.75 Ma. From 3.4 to 3.3 Ma average MOW temperature and salinity increased by 2°–4 °C and ~1 psu both at proximal Site 548 and distal Site 982. The rise implies a rise in flow strength, coeval with a long-term rise in both west Mediterranean Sea surface salinity by almost 2 psu and average bottom water salinity (BWS) by ~1 psu, despite inherent uncertainties in BWS estimates. The changes were linked with major Mediterranean aridification and a drop in African monsoon humidity. In contrast to model expectations, the rise in MOW salt discharge after 3.4 Ma did not translate into improved ventilation of North Atlantic Deep Water, since it possibly was too small to significantly influence Atlantic Meridional Overturning Circulation. Right after ~2.95 Ma, with the onset of major Northern Hemisphere Glaciation, long-term average bottom water temperature (BWT) and BWS at Site 548 dropped abruptly by ~5 °C and ~1–2 psu, in contrast to more distal Site 982, where BWT and BWS continued to oscillate at estimates of ~2 °C and 1.5–2.5 psu higher than today until ~2.6 Ma. We relate the small-scale changes both to a reduced MOW flow and to enhanced dilution by warm waters of a strengthened North Atlantic Current temporarily replacing MOW derivates at Rockall Plateau.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Derivates of Mediterranean Outflow Water (MOW) constitute a tongue of warm and highly saline, moreover, nutrient-depleted and highly oxygenated waters in the northeast Atlantic at 300–1400 m water depth (w.d.), that derive from deep and intermediate waters downwelled in the Mediterranean Sea and advected through the Strait of Gibraltar (Reid, 1979; Zenk and Armi, 1990). Because of local topography and mixing processes in the Gulf of Cadiz (Borenäs et al., 2002) MOW splits into an upper (300–800 m depth, 13.5 °C, 36.5 psu) and lower limb (1100–1400 m depth, 11 °C, 37–38 psu). Due to Coriolis forcing most of the lower limb flows north forming a boundary current of meandering mesoscale eddies along the continental slope of Iberia (Käse and Zenk, 1996). Having passed the Bay of Biscay these waters reach up to Rockall Plateau (O’Neill-Baringer and Price, 1997), where they mix with North Atlantic Current (NAC) waters (McCabe and Mauritzen, 2001). Increasing salinity anomalies at the depth level of MOW in the Rockall Trough are linked with temporary contraction of the subtropical gyre and thus suggest a direct advective, albeit temporally variable, pathway (Lozier and Stewart, 2008).

On the basis of Nd isotopes (ε_{Nd}) and paired benthic δ18O and Mg/Ca records our study aims to reconstruct the development of temperatures, salinities and densities, water mass transport and reach of lower MOW derivates in the context of global changes from the warm mid-Pliocene climate to the Pleistocene onset of major Northern Hemisphere Glaciation (NHG), 3.7–2.55 Ma. The records have been obtained from sediments of Deep Sea Drilling Project (DSDP) Site 548 off Brittany (1250 m w.d.) and Ocean Drilling Program (ODP) Site 982 on Rockall Plateau (1135 m w.d.) at the northeast Atlantic continental margin (Fig. 1). Horizontal and vertical anomalies of the proxies between the two sites help us to constrain past shifts in the spreading and mixing of MOW. We surmise that vertical displacements of MOW mainly reflected changes in MOW density since the mid-Pliocene, provided that the aperture of Gibraltar had been largely constant since the end of the Messinian ~5.3 Ma (Blanc, 2002).

Changes in the initial state of MOW are monitored at ODP Site 978 in the Alboran Sea (1930 m w.d.; Fig. 1). Today, this site is bathed in Western Mediterranean Deep Water (WMDW) which contributes ~33% of the MOW flux of ~0.7 Sverdrups (Tsimpis and Bryden, 2000;...
García-Lafuente et al., 2007). About 67% of MOW is entrained from Mediterranean Intermediate Water (Millot, 1999). In the past, the composition of these two water masses may have varied in parallel, since all Mediterranean sites of deep-water convection are controlled by largely similar climatic forcings. Site 978 also has monitored long-term Pliocene changes in sea surface temperature, salinity, and climate, that finally have controlled changes of MOW density and flow strength. In the Strait of Gibraltar MOW is flowing west beneath an eastward flow of warm Atlantic surface waters (~15 °C, ~36.2 psu), a derive of the Azores Current, which compensates for both the outflow and net evaporation loss in the Mediterranean basins (Garrett et al., 1990; Rogerson et al., 2012). When MOW cascades from the Strait of Gibraltar through the canyons of the Gulf of Cadiz, large amounts of less saline North Atlantic Central Water (NACW) are entrained from above and Labrador Sea Water (LSW) is admixed from below. Hence the volume of Mediterranean Outflow waters, hereafter called MOW derivates, is rising by a factor of 3–4 (O’Neill-Baringer and Price, 1999), whereas temperature, salinity, and density are dropping significantly (Fig. 1, lower panel).

Major changes in MOW transport are compared to deep-water paleoceanographic records obtained elsewhere in the Atlantic to investigate whether and to which degree they were linked to changes in Atlantic Meridional Overturning Circulation (AMOC), in particular, during times of long-term variations in the middle and late Pliocene (Lisiecki and Raymo, 2005; Sarthein et al., 2009).

To enable a comprehensive understanding of long-term paleoceanographic trends we now merge our new data obtained at Site 982 (3.7–2.5 Ma) and sites 548 and 978 (3.0–2.5 Ma) with records previously published for sites 548 and 978 (3.7–3.0 Ma; Khelifi et al., 2009). This way we can (1) derive spatial trends in MOW composition, (2) monitor a MOW salinity maximum from 3.3 to 2.95 Ma at three different sites, and (3) and put the new εNd record of Site 982 into a proper perspective with records previously measured and now updated at sites 548 and 978.

2. Tracers of MOW derivates in the present and past Northeast Atlantic

2.1. Neodymium isotopes

Nd has an oceanic residence time of ~400–2000 years, slightly shorter than the global ocean mixing time (Arsouze et al., 2008; Rempfer et al., 2011). The dissolved Nd isotope composition of modern seawater in the Atlantic is controlled by weathering inputs of continental rocks of different ages and compositions, mixed and advected by water masses leading to εNd values between −7 and −26 (cf. Frank, 2002) and thus serves as quasi-conservative tracer of water mass mixing and circulation (Supplementary text #1). For the unradiogenic Nd isotope signature of LSW (εNd = −14) the input mainly stems from weathering of Precambrian rocks in Greenland and Canada and is dominated by the marginal exchange of downwelled waters with ice rafted, fluvial, shelf, and Eolian sediments (Lacan and Jeandel, 2005).

In contrast, modern MOW leaves Mediterranean Site 978 with an εNd signature of −9.4 to −9.1 (Fig. 2b; Tachikawa et al., 2004). Farther downstream, εNd signatures of MOW derivates become increasingly less radiogenic along its flow path through mixing with NACW and LSW. Combined evidence from various archives suggests that εNd values change from −9.4 off southern Portugal (Stumpfl et al., 2010) to −9.8 further west (Muirhos et al., 2008), −11.1 to −11.2 in the Bay of Biscay (Rickli et al., 2005; Copard et al., 2011), and −10.5 at Site 548 west of Brittany (Khelifi et al., 2009). Finally, εNd drops to −11.3 at Rockall Plateau Site 982 at 1135 m w.d. (this study) as compared to −12 to −13 characteristic of LSW below (Spivack and Wässerburg, 1988) and −13 of NAC above Site 982 (Lacan and Jeandel, 2004). Here, shallow intermediate waters on Rockall Plateau may even be less radiogenic with values as low as −14 (deep-sea coral εNd data of Colin et al., 2010, Copard et al., 2010, and Robinson et al., 2014). Thus, the εNd difference between MOW and ambient Atlantic waters is sufficient to resolve changes in the past admixture of MOW in the Pliocene sediment records of sites 548 and 982. However, we note that Iceland–Scotland Overflow Waters at >1300 m depth near Rockall Plateau and volcanic-ash-contaminated sediments around Iceland also show seawater εNd values of −9.7 to −10.3, similar to those of MOW derivates (Crocket et al., 2011; Elmore et al., 2011; Khelifi and Frank, 2014).

2.2. Estimates of salinity, temperature, density, and benthic δ13C

Elevated salinity (38.4 psu), temperature (13 °C), and density estimates (27.7–29) help us in tracing modern MOW across the northeast Atlantic (Figs. 1b and 6) and clearly exceed those of ambient water masses in the same depth range. For the Pliocene we need to consider two factors that may have dominated major changes in density and thus, changes in the reach and depth level of MOW:

(1) The initial density of MOW in the Strait of Gibraltar. Its variability depends on Mediterranean climate and the hydrological regimes that controlled intermediate and deep-water formation in the eastern and western Mediterranean. During the mid and late Pleistocene the density of MOW varied on millennial-time scales. It was particularly high during cold and arid Heinrich stadials (Zahn et al., 1997; Cacho et al., 2000; Voelker et al., 2006), a scenario that only started near the end of the Pliocene, with the onset of major Northern Hemisphere Glaciation ~2.8 Ma (Bartoli et al., 2006).

(2) Past changes in MOW injection were also controlled by changes in the aperture of the Strait of Gibraltar, today ~284 m deep and ~30 km wide (Bryden and Kinder, 1991), but strongly reduced.
during Pleistocene glacial sea level drops of \(-130\) m. Most likely, this bathymetric change was overcompensated by a rise in glacial Mediterranean aridity and evaporation and resulted in farther MOW penetration (Zahn et al., 1987). In contrast, the MOW flow may have been increased during Pliocene sea level highstands (Raymo et al., 2011; Miller et al., 2012; model experiments and synthesis in Rogerson et al. (2012)). However, little is known about changes in the aperture of the Strait of Gibraltar, controlled by geodynamics over the Pliocene.

The pronounced ventilation of Mediterranean deep and intermediate waters today results in \(\delta^{13}C\) values of \(-1.25 - 1.4\%\) for MOW, significantly higher than those of nearby Atlantic intermediate waters (Zahn et al., 1987, 1997; Sarnthein et al., 1994), which unexpectedly contrast with \(1.0 \pm 0.05\%\) measured in modern deep waters of the Alboran Sea (Pierre, 1999). During the last glacial cycle \(\delta^{13}C\) values (up to \(1.6\%\)) were elevated in deep waters of the Alboran Sea (Cacho et al., 2000). A similar trend was expected for Pliocene cooling periods on short and long time scales (Fig. 2d).
3. Materials and methods

3.1. Neodymium isotope analyses

The radiogenic Nd isotope composition of past bottom waters was extracted from leachates of authigenic Fe–Mn oxyhydroxide coatings of bulk sediment samples (Gutjahr et al., 2007). Different from the potential bias in other proxies based on stable isotope or element ratios, radiogenic Nd isotope ratios are not affected by biological processes. The analytical procedures employed to measure Nd isotopes are detailed in Supplementary text #1 (data deposited in the PANGAEA databank at http://www.pangaea.de).

3.2. Foraminifera species selected for proxy analyses

To reach an orbital to millennial-scale resolution of the proxy records (Supplementary Tables S1 and S2) 20 cm² samples of 2 cm thick sediment sections each were sampled at intervals of 10–20 cm at Site 978 and at intervals of 10 cm at sites 548 and 982. Oven-dried samples were disaggregated in H₂O₂ and wet-sieved at 63 μm. The coarse fraction was dried at 40 °C and sieved into 5 subfractions of >400 μm, 315–400 μm, 250–350 μm, 150–250 μm, and 63–150 μm. From the >250-μm fraction we picked planktic and benthic foraminifers for stable isotope and Mg/Ca analyses. The species selected are listed in Table S1. Cibicidoides kullenbergi is considered a junior synonym of Cibicidoides mundulus (van Morkhoven et al., 1986; details in Holbourn and Henderson, 2002). For minor element analyses we carefully checked all benthic specimens with regard to overgrowth while crushing them under the microscope. At Mediterranean Site 978 we used well-preserved glassy specimens only. Specimens at Atlantic sites 548 and 982 were not glassy, however, also without any sign of secondary calcite overgrowth.

3.3. Stable isotope analyses

Monospecific samples of 15–20 planktic and 3–5 benthic foraminifera specimens were generally crushed under the microscope and carefully ultrasonicated in ethanol for 30 s to separate fine-grained carbonate particles. After drying at 40 °C stable oxygen and carbon isotope compositions were measured on a Finnigan MAT251 mass-spectrometer connected to a Kiel I device at the Leibniz Laboratory for Radiometric Dating and Isotope Research of Kiel University. The δ¹⁸O and δ¹³C data are given relative to the Vienna PeeDee Belemnite (VPDB) standard. The analytical precision is ±0.07%o for δ¹⁸O and ±0.05%o for δ¹³C. Benthic δ¹⁸O values measured on Cibicidoides species were corrected for species-specific offsets relative to Uvigerina peregrina (+0.64), the oxygen isotope composition of which is in equilibrium with ambient sea water (Shackleton, 1974; Ganssen, 1983). Raw data are provided in Supplementary Figs. S1 and S2.

3.4. Mg/Ca analyses

At all sites investigated Mg/Ca ratios were measured on tests of Cibicidoides mundulus (analytical details in Supplementary text #2; raw data shown in Supplementary Figs. S1 and S2). Our Mg/Ca records are not corrected for potential changes in seawater Mg/Ca since it is spatially constant and has hardly changed on timescales of <1 Ma (Broecker and Peng, 1982). All sites of this study occur above the foraminifera lysoline, where dissolution is hardly affecting Mg/Ca. Also, we assume that our foraminiferal Mg/Ca values have not significantly suffered from changes in carbonate ion saturation. Modern northeast Atlantic waters are supersaturated with respect to calcite (Sosdian and Rosenthal, 2009). Moreover, Pliocene bottom waters were warmer and hence even more supersaturated (Gröger et al., 2003). Most importantly, BWTs (5°–16 °C) deduced in this study are warmer than 5 °C, the somewhat controversial cold end of the relationship between Mg/Ca and BWT (Yu and Elderfield, 2008). This does not apply to the onset of major NHG, when Site 548 was bathed in a MOW derivate ~5 °C and carbonate ion saturation was possibly reduced for about 100 kyr (details farther below).

3.5. Alkenones as tracer of sea surface temperature

Sea-surface temperatures (SST) in the western Mediterranean Sea were derived from a record of C₃₇ alkenone unsaturation (U₃₇), using the technique of Prahl and Wakeham (1987) and the global field-based transfer equation of Conte et al. (2006) with a mean uncertainty of ±1.2 °C. This equation includes data from the Mediterranean and covers a broad SST range, and thus appears suitable for reconstructing high Pliocene SST in the Mediterranean Sea (details of alkenone analysis are provided in Supplementary text #4).

3.6. Derivation of bottom water temperature and salinity estimates

No temperature calibration has as yet been established for benthic Mg/Ca of Cibicidoides mundulus in the western Mediterranean Sea and northeast Atlantic at the water depths of MOW. To convert Mg/Ca data into estimates of BWT we used the global temperature equation defined for Mg/Ca of Cibicidoides sp. (Elderfield et al., 2006; details in Supplementary text #3). For Mediterranean Site 978 data we also used the equation of Lear et al. (2002), which also is defined for Cibicidoides species sensu lato, but mainly based on samples from Little Bahama banks with a temperature range extending to up to 18 °C. The temperature estimates of the two equations hardly differ. We preferred the equation of Elderfield et al. (2006), since it better constrains BWT below 5 °C. Also, we reduced the uncertainty range of low BWT estimates by increasing the number of replicates analyzed.

Using Mg/Ca-based BWT and epibenthic δ¹³C we calculated the δ¹⁸O signal of bottom waters (δ¹⁸O_bw) and estimates of bottom water salinity (BWS; details in Supplementary text #3). To extract estimates of past BWS, we corrected the benthic δ¹⁸O_bw for the global ice volume effect, which was deduced from Pliocene δ¹³C shifts in the LR04 record (Lisiecki and Raymo, 2005; Fig. 4) assuming that these shifts reflect ice volume changes only (0.1% = 10 m sea level). To calculate propagated errors of δ¹⁸O_bw we employed the square root of the summed-squared errors of BWT and benthic δ¹³C. Error bars in Figs. 3–5 were drawn for 10–15-point running-averages of the records (Supplementary text #6).

In contrast, the δ¹⁸O signal of surface waters, δ¹⁸O_sw, was rarely converted to actual equivalents of sea surface salinity (SSS). In the Alboran Sea δ¹⁸O_sw and SSS changes mainly reflect changes in the local freshwater budget, and to a minor degree possibly changes in the salinity of inflowing Atlantic surface waters. However, this region lacks any transfer equation that properly calibrates local δ¹⁸O_sw vs. SSS. A further problem may derive from the fact that SSSs of the near-surface habitat of Emiliania huxleyi, which carries the U₃₇ signal, strongly differ from that of Globigerinoides ruber near 25 m depth, which carries the δ¹⁸O signal. For calculating δ¹⁸O_sw records (Fig. 4) we used U₃₇-based annual SST estimates that only differ by ~2.5–3.0 °C between the two different habitat depths. Indeed, this temperature difference applies to coeval foraminifera-based SST estimated for the Upper Pliocene at West Mediterranean Site 975 (Serrano et al., 2007). Moreover, we assume that surface-to-subsurface temperature anomalies have changed little over the Upper Pliocene and thus can be ignored. In our discussion we only refer to the prominent SSS minimum at 3.6 Ma and subsequent long-term SSS rise at 3.6–3.4 Ma, equivalent to >1.5 %o δ¹⁸O_sw (i.e., an equivalent of ~7 °C). In comparison with other uncertainties, the problem of surface-to-subsurface temperature anomalies can be ignored.
3.7 Age control

For Alboran Sea Site 978, orbital stratigraphy was obtained from tuning the planktic δ^{18}O record to the stacked benthic δ^{18}O record LR04 (Lisiecki and Raymo, 2005). In contrast, the benthic δ^{18}O record of Site 978 does not reflect the evolution of global ice volume change, since it is dominated by Mediterranean deep-water formation (Supplementary Fig. S3a). Furthermore, our Site 978 age model 3.62–2.72 Ma...
integrates evidence from shipboard bio- and magneto-stratigraphy (Leg 161 Shipboard Scientific Party, 1996) (Supplementary Table S2). Some core breaks have led to a sediment loss equal to an interval of up to 12,500 years (Fig. S3a). Planktic and benthic δ18O records are based on foraminifera species listed in Supplementary Table S1. Sedimentation rates and sampling intervals are listed in Supplementary Table S2.

Likewise, the Site 548 age model is based on orbital tuning of the planktic δ18O record (Fig. S3b) and incorporates evidence from shipboard bio- and magnetostratigraphy (Leg 80 Shipboard Scientific Party, 1985; Supplementary Table S2), covering the interval 3.68 – 2.56 Ma. The sediment record of Site 548 suffers from three hiatuses, as consequence of which parts of Marine Isotope Stage (MIS) G13 to G15, KM2 to KM3, and MG4 were lost. Further small sediment sections may have been lost at core breaks near MIS G20, M2, and G12. Here, sampling gaps may reach up to 12,500 years. Planktic and benthic δ18O records are based on species listed in Supplementary Table S1. Sedimentation rates and sampling intervals are listed in Supplementary Table S2.

As for sites 978 and 548, the age model of Site 982 benthic δ18O record was tuned to the orbital oscillations of reference record LR04 (Lisiecki and Raymo, 2005; details in Khéli et al., 2012). In particular, our age model is based on a renewed hole-specific inspection of magneto-stratigraphic reversals (Channell and Guyodo, 2004) and includes new epibenthic δ18O records for short Pliocene sediment sections supplemented for holes 982A, B, and C. These sections cross core breaks in the δ18O record first published for Hole 982B (Venz and Hodell, 2002; Lisiecki and Raymo, 2005). The age model of Khéli et al. (2012) for the composite δ18O record results in a hiatus, during which the Kaena magnetic subchron was lost, and in an absolute-age reduction by 20–130 kyr for all proxy records over the time span 3.2–2.7 Ma (Supplementary Table S2, Supplementary Fig. S3c). The planktic (unpubl. data) and benthic δ18O records were measured on species listed in Supplementary Table S1. Supplementary text #5 details arguments that refute the stratigraphic view of Lawrence et al. (2013).

4. Results

4.1. Overview of Pliocene εNd records (Fig. 2b)

At West Mediterranean Site 978, WMDW, a major source of MOW, showed a stable εNd signature of −9.1 to −8.6 from 3.6 to 2.75 Ma, which is slightly (0.5 units) more radiogenic than εNd values of −9.4 to −9.1 found for deep waters at West Mediterranean sites today (Tachikawa et al., 2004). At northeast Atlantic Site 548 εNd signatures ranged between −10.5 and −9.7 from 3.65 to 2.58 Ma, as compared to −10.3 Ma today. At 3.65, 3.1, and 2.8 Ma short orbital-scale εNd excursions reached −9.1 to −8.7, values similar to those of modern MOW source waters at Site 978 (Fig. 2b top).

Likewise, distal Site 982 showed a relatively stable εNd signature of −11 to −9.3 for the same period of time (Fig. 2b base). In total, the Pliocene signatures were 0.5–1.3 units higher than the modern.
radionuclide ε_{Nd} range of −11.6 to −10.9 ± 0.3 found in triplicate for two different core top samples in our laboratory. In contrast, Late Holocene deep-sea coral data from sites closely above Site 982 show seawater ε_{Nd} signatures of −12.9 to −14.2, which either suggest an influence of LSW or one of deep-reaching NAC (Colin et al., 2010; Copard et al., 2010; Robinson et al., 2014). After all, we conclude that the Pliocene ε_{Nd} data of Site 982 reliably reflect MOW-derived bottom water signatures that were not influenced by partial dissolution of volcanic ashes from Iceland, in contrast to ε_{Nd} data at Site BOFS17K − 40 nm farther northwest on Rockall Plateau, more proximal to Iceland (Elmore et al., 2011). Also, the ε_{Nd} signal was not controlled by Norwegian Sea overflow waters (Lacan and Jeandel, 2004), that pass by the top of Rockall Plateau few hundred meters below Site 982 because of higher density (Fig. 1, lower panel). In particular, we regard it as highly unlikely that volcanic ash supply has continuously induced a more radiogenic ε_{Nd} signature at Site 982 over the complete time span 3.6–2.8 Ma. In addition, deep-sea coral ε_{Nd} data from the nearby Porcupine Sea Bight (Montero-Serrano et al., 2011) show that intermediate waters in the eastern North Atlantic have been extremely variable in the past and shifted from ε_{Nd} values as radiogenic as −9.5 at 280 ka to −15 in the early Holocene depending on the different source areas of waters entrained in the North Atlantic.

Both the initial ε_{Nd} signature of WMDW at Site 978 and that of MOW derivates in the northeast Atlantic were slightly higher during the late Pliocene than today. The ε_{Nd} record of Site 982 was up to −0.8 units less radiogenic than that of more proximal Site 548. This reflects progressive dilution of the Mediterranean ε_{Nd} signal by LSW (possibly also by NAC) along its flow path to the north, similar to today. MOW signatures (−9 to −10.5 at Site 548 and −10 to −10.5 at Site 982) were persistently more radiogenic than those of LSW (−11 to −12; Site 3511-1; Muiños et al., 2008). Thus, most likely no intermediate waters other than MOW had an ε_{Nd} signature positive enough to produce the relatively radiogenic values found at our two core sites in the Pliocene North Atlantic, in particular at Site 548. ε_{Nd} records of northeast Atlantic sites 548 and 982 suggest a largely stable Pliocene advection of MOW at essentially constant water depths from the Alboran Sea up to Rockall Plateau. From 3.7 to 3.64 and from 2.75 to 2.67 Ma, however, ε_{Nd} Values at Site 982 dropped down to −11 to −12 each, excursions that either reflect an enhanced advection of LSW and/or a deepening of the NAC waters, thus a short-lasting cessation or major shoaling of the MOW plume.

A potential admixture of Antarctic Intermediate Water (AAIW) to MOW is hard to specify at northeast Atlantic margin sites, since modern AAIW is already highly diluted, when it reaches locations off Portugal (−13 ± 8%; Louarn and Morin, 2011). The progressive dilution of AAIW results in a meridional ε_{Nd} gradient from −11 at 10°N (von Blanckenburg, 1999) to −11.7 at 22°N (Richli et al., 2009) and hence, in an ε_{Nd} signature hard to distinguish from that of LSW.

These conclusions still apply, when taking into account a general −1 ε_{Nd} shift of deep water signatures to more radiogenic values in the western and eastern North Atlantic at 700–2700 m depth in the late Pliocene as indicated by low-resolution time series of ferromanganese crusts (O’Nions et al., 1998). Others that were measured within the water depth of modern LSW in the Bay of Biscay stayed essentially constant near ε_{Nd} = −11 (Muiños et al., 2008). Although the locations of the ferromanganese crusts are not fully representative for tracing of Pliocene LSW close to our two sediment sites, the latter ε_{Nd} signature confirms that MOW derivates indeed did not reach distal Site 982 anymore both at 2.8–2.6 and 3.7–3.64 Ma. In summary, given that the original ε_{Nd} Signature of Pliocene LSW that was slightly more radiogenic than that of modern deep waters, we consider an ε_{Nd} signature of −11 to −12 a realistic Pliocene end member value for LSW. Future sedimentary ε_{Nd} Records of NADW, LSW, and NAC will help us to confirm this estimate.

4.2. Benthic δ^{13}C records (Fig. 2d)

At Site 978 the epibenthic δ^{13}C record of Pliocene Mediterranean deep-water ventilation shows spectacular short-term oscillations between 0 and 1.5‰, that clearly follow the 21-ky cycle of orbital precession, with δ^{13}C-based ventilation minima being largely confined to interglacial stages (Supplementary Fig. S4). Long-term δ^{13}C maxima
of >1% occurred both prior to 3.6 Ma and at 3.23–3.08 Ma. In general, Pliocene source waters of MOW were much less ventilated than those during the late Pleistocene (Cacho et al., 2000; Voelker et al., 2006). Likewise, δ13C-based ventilation of Pliocene MOW was clearly reduced at East Atlantic margin Site 548 (running average of 0.5–1.0‰ vs. 1.0–1.7‰ during Pleistocene cold stages; Sarnthein et al., 1994). The δ18O record of Site 982 shows a distinct long-term increase in bottom water ventilation by ~0.3‰ from 3.45 to 3.25 Ma, when rising BWT and BWS suggest a major intensification of MOW flow (see below). After 2.9/2.8 Ma, δ18O records of sites 548 and 982 display a prominent synchronous maximum that paralleled the onset of major NHG around MIS G10–G4 (Sarnthein et al., 2009), followed by a long-term drop from 2.7 to ~2.5 Ma, trends without analogy in the δ18O record of Mediterranean Site 978. Different from the Pleistocene (Venz and Hodell, 2002), Pliocene δ18O values at Site 548 generally were ~0.2‰ lower than those at more distal Site 982, probably the result of highly ventilated waters admixed via North Atlantic intermediate and/or NAC waters that dominated over MOW.

4.3. Variations in bottom water temperature and salinity

At West Mediterranean Site 978 the BWT of modern MOW source waters is 13 °C, BWS is 38.4 psu, and bottom water density (BWD) is 1029 kg m−3 (NODC, 2001). From 3.6 to 2.7 Ma Mg/Ca ratios were on average 5.5 and rarely reached 7.5–8.0 mmol mol−1 (Fig. 2), which translates to Pliocene BWT of ~15–16 °C, rarely even 18 °C, and thus BWT 2–5 °C warmer than today (Fig. 3a). In addition, the BWT record shows many short-lasting cold oscillations down to 14 °C and below, possibly following 20-ky and 95-kyr orbital cycles (for uncertainty shows many short-lasting cold oscillations down to 14 °C and below, rising BWT and BWS suggest a major intensification of MOW flow (see below). After 2.9/2.8 Ma, δ18O records of sites 548 and 982 display a prominent synchronous maximum that paralleled the onset of major NHG around MIS G10–G4 (Sarnthein et al., 2009), followed by a long-term drop from 2.7 to ~2.5 Ma, trends without analogy in the δ18O record of Mediterranean Site 978. Different from the Pleistocene (Venz and Hodell, 2002), Pliocene δ18O values at Site 548 generally were ~0.2‰ lower than those at more distal Site 982, probably the result of highly ventilated waters admixed via North Atlantic intermediate and/or NAC waters that dominated over MOW.

Average (δ18Omw-based) BWS at Site 978 showed a unique minimum near 3.55–3.6 Ma, ~0.5‰ δ18Omw or 1.0 psu lower than today (Fig. 2b and c). This minimum was accompanied by a major freshening of the surface waters by ~2 psu compared to today (Fig. 4). From 3.55 to 3.3 Ma, salinities of both surface and bottom waters rose by ~1‰ δ18O or ~2 psu, a shift that exceeds the uncertainty range of individual estimates and that of the data populations averaged for MOW Regimes 1 and 2 (Figs. 2c and 5; see Table 1 and details farther below). From 3.2 to 3.05 Ma, average BWS dropped back to the modern level. After a renewed rise by ~0.8 psu near 3.05 Ma BWS stayed generally high until 2.75 Ma, except for short-term minima at warm MIS G17, G13, G11, and G7 (~2.96, 2.86, 2.83, and 2.77 Ma).

At Site 548, the modern BWT of the lowermost part of MOW is 7.5 °C, BWS is 35.5 psu, and BWD is 1027.74 kg m−3 (Shipboard Scientific Party, 1985). As documented by Khelifi et al. (2009), BWT showed a long-standing minimum from 3.6 to 3.45 Ma. Subsequently, they rose from 6° to ~10 °C until 3.33 Ma and subsequently oscillated at 8°–11 °C until MIS G17 (2.95 Ma) (Fig. 3a). Immediately after 2.95 Ma, average BWT underwent a unique abrupt and long-standing drop by 3°–4 °C down to ~4 °C at MIS G16, an immense shift little understood as yet. After 2.8 Ma, average BWT returned back to 6.5°–7.5 °C and thus to temperatures only slightly lower than those of today. Pliocene BWS largely varied closely in parallel with changes in BWT such as (i) at 3.45–3.33 Ma, where average δ18Omw showed a unique rise from 0.7–1.0‰ equal to ~1.4–2.0 psu BWS, (ii) a long-lasting high in BWS oscillations from 3.33 to ~3 Ma, and (iii) at MIS G16 (after 2.96 Ma), where BWS decreased by almost 3 psu (~1.5‰ δ18O) until 2.93 Ma (Fig. 3b, c). Subsequently, BWS oscillated with large amplitudes between 0 and up to 2 psu above the modern level.

Today, Rockall Plateau Site 982 (5.5 °C, 35 psu, ~1027.6 kg m−3) is bathed in upper NADW (i.e. LSW) with minor derivate of distal MOW admixed (Fig. 1; McCartney and Mauritzen, 2001). In the late Pliocene both the long-term trends and absolute level of BWT and BWS at Site 982 closely matched those of MOW-dominated Site 548 (Fig. 3a–c). This applies, for example, to the major rise in BWT and BWS from 3.45 to 3.3 Ma that ended with a salient maximum 3.3 Ma (MIS M2), and to essentially synchronous BWT and BWS oscillations between 3.25 and 2.95 Ma. However, the records of sites 982 and 548 began to deviate at the onset of major NHG, 2.95–2.65 Ma, when BWT of Site 548 started to oscillate at levels ~2–4 °C lower than that at Site 982. Here, a long-term drop in BWT by 2–3 °C only occurred at MIS G2 (~2.65 Ma), almost 300 kyr after that of Site 548. Subsequently, BWT (and BWS) records of both sites again matched as closely as prior to 2.95 Ma, however, at a temperature level that stayed significantly higher than that of today (Fig. 3).

5. Discussion

5.1. Long-term changes in the advection, reach, and progressive dilution of MOW

The present study is centered around the question of whether derivatives of the outflow of Mediterranean Sea Water have reached up to Rockall Plateau during the late Pliocene as MOW eddies sporadically do today. εNd signatures at northeast Atlantic Site 982 (Fig. 2b) that are more radiogenic than those in other intermediate water masses below and above suggest that the answer in fact is yes, though not for the complete but for most of the time period analyzed. A further objective deals with the forcings that may have influenced Pliocene long-term major changes in the advection of MOW under climate boundary and sea level conditions very different from today. By now, Pliocene changes in the MOW plume received little attention, except for rare pioneer studies of Loubere (1987a, 1987b, 1988) and Khelifi et al. (2009) and various reports on the Pliocene evolution of oceanography and climate within the Mediterranean region, recently summarized by Colleoni et al. (2012) and Rogerson et al. (2012).

Our prime evidence is based on the new εNd record of Site 982. It shows a relatively constant radiogenic Nd signature only interrupted by two marked excursions toward less radiogenic values (Fig. 2b) reflecting two periods of time, one prior to 3.63 and one from 2.75 to 2.65 Ma, when MOW did not reach Rockall Plateau any longer (hydrologic regimes 0 and 3a; Figs. 2b, c, and 5). Further evidence is based on long-term major changes in BWT and BWS between 3.63 and 2.6 Ma (Figs. 3–5). These enable us to distinguish a total of three major long-term stable hydrological regimes prevailing over the periods of time 3.63–3.4 Ma, 3.3–3.0 Ma, and 2.9–2.6 Ma, listed in Table 1, which likewise resulted from differences in flow strength, lateral mixing and progressive dilution of MOW. Each regime is defined by a very broad temperature–salinity array (Fig. 5). Their average values listed in Table 1 only represent a coarse approximation. At Mediterranean Site 978 the three regimes only differ little but in a gradual shift in BWS. In contrast, at Site 548 the Regimes 1, 2 and 3 differed significantly by offsets in both BWS and BWT. At Site 982 strongly reduced BWS clearly distinguish Regime 1 from the overlapping arrays of Regimes 2 and 3. Within Regime 3 the short-lasting event of Regime 3a stands out by a significant rise in BWT.

As displayed by the schematic transects of Fig. 6 and Table 1, vertical shifts in the MOW plume between Gibraltar and Rockall Plateau were mainly driven by changes in both the density of MOW and that of North Atlantic intermediate and NAC waters. During scenario 0 (prior to 3.63 Ma; not documented at Site 978 and hardly at Site 548) an excursion to extremely low εNd signatures and fairly low equivalent values of BWS and BWT suggests that – different from today – no MOW derivatives penetrated up to Rockall Plateau. During Regime 1, equivalents of bottom water salinity and density at West Mediterranean Site 978 initially were slightly lower than today. By and large, the initial salinity low matched a similar extreme low in sea surface salinity (Fig. 4), and hence probably resulted from initially still enhanced humidity of Mediterranean climate (Khelifi et al., 2009). In turn, the West Mediterranean low in BWS and BWT must have weakened the flow of MOW and have led to a reduction of salinities and densities of MOW at sites 548 and 982, down to a level similar to today (Figs. 2 and 4).
However, εNd signatures at Site 982 already were clearly more radiogenic during Regime 1 than today (–10.5 versus –11.3). Consequently, some derivates of MOW must then have reached Rockall Plateau Site 982 and possibly formed an admixture to NAC and/or LSW stronger than today.

The transition between Regimes 1 and 2, 3.4–3.3 Ma, was marked by a major rise in salinity and density of both Mediterranean deep waters and MOW (Table 1), which indicates an enhanced MOW advection that culminated near 3.3 Ma. The origin of this increase in MOW flow and a final overshoot were assigned to a prominent rise in Mediterranean summer aridity yet unexplained (Khéli et al., 2009; pollen and lake-based evidence of reduced African summer monsoon in Fauquette et al. (1998) and Drake et al. (2008)). Benthic δ13C data (Fig. 2d) suggest that this rise has caused a major increase in deep-water ventilation at Rockall Plateau Site 982. High bottom water densities continued to prevail at sites 548 and 982 over subsequent Regime 2, –1 kg m$^{-3}$ higher than today, while density estimates at Site 978, the source region of MOW, stayed slightly lower than today (Fig. 5). Hence, the density gradient between Mediterranean Sea and Rockall Plateau had largely disappeared (Table 1). During this time we surmise that the MOW plume expanded by up to ~500 m to greater water depths (Fig. 6).

Hydrological Regime 3 started immediately after MIS 17, 2.95 Ma, with an abrupt 5-degree drop in BWT at Site 548 (Fig. 3), which, however, was not reflected at Site 982, but coincided with a marked increase in bottom water ventilation at Site 982, that lasted until ~2.6 Ma (Fig. 2d). Both events were coeval with the onset of the final closure of the Central American Seaways, which most likely finally triggered the onset of major NHG (Bartoli et al., 2005; Sarnthein et al., 2009). We conclude that this major event also induced the major changes in both the Mediterranean Outflow and Atlantic Meridional Overturning Circulation observed at the boundary between hydrologic Regimes 2 and 3. Typical for cold stages in the Pleistocene (Zahn et al., 1997), BWD at Mediterranean Site 978 increased up to values slightly higher than today, whereas BWD at Atlantic sites 548 and 982 persisted at the high levels already reached during Regime 2 (Table 1), no matter, whether Site 982 was bathed in derivates of MOW or in pure Atlantic waters (Fig. 5).

During Regime 3a, 2.75–2.65 Ma, high BWD values at Site 982 coincided with a significant warming of BWT by to 2°/3 °C (Figs. 3 and 5), when εNd signatures (Fig. 2b) suggest that MOW fully disappeared from Rockall Plateau. We think that it is unlikely that cold LSW then replaced the MOW at Rockall Plateau. Instead we assume that waters with more negative εNd values were admixed from the overlying warm, and then clearly intensified NAC (Sarnthein et al., 2009). Also, the MOW plume may have weakened hence shifted upslope (Fig. 6).

We may speculate that the ultimate trigger of Regime 3a was linked to the major sea-level drop by ~20 m for interglacial stages over MIS G17–G3 (Miller et al., 2012). This drop implies a significant restriction in the aperture of the Strait of Gibraltar gateway from ~2.95 to 2.72 Ma, which resulted in a reduced and thus likely shallower injection of Mediterranean waters at the level of the North Atlantic intermediate water circulation. In agreement with the ‘firehouse principle’ the consequences of this shift were most obvious at distal Site 982.

In comparison with hydrological Regime 3a the breakdown of MOW advection outlined for Regime 0 (~3.63 Ma) may have been different. In the mid Pliocene global sea level was high and did not restrict the aperture of the Strait of Gibraltar. Moreover, the bottom waters that replaced MOW displayed only minor warming, whereas δ13C-based estimates showed an extreme ventilation minimum (Figs. 2d and 3). Different from Regime 3a, the boundary conditions of Regime 0 may indicate an intrusion of LSW up to the top of Rockall Plateau, which had been poorly ventilated during the late Pliocene (Bartoli et al., 2005).

5.2. Changes in MOW salt discharge as potential trigger of changes in Atlantic MOC

Reid (1979) used conceptual models and observations to postulate that MOW-based discharge of heat and salt may reach the Nordic Seas, where any increase in salinity may trigger enhanced NADW formation which in turn may contribute to global climate change. So far, Reid’s hypothesis has hardly been tested by paleoceanographic records (McCarrn and Mauritzen, 2001; Bower et al., 2002).

On the other hand, model simulations yielded controversial results on the role of MOW-borne salt discharge. New et al. (2001) concluded that MOW does not penetrate beyond Rockall Plateau at 53°N and thus cannot directly inject any salt into the cells of deep-water formation in the Nordic Seas, but only indirectly admix salt to NAC waters from below. Rahmstorf (1998) reasoned that the injection of MOW salt may at best enhance NADW formation by ~1 Sv, which is much less than the seasonal and interannual fluctuations of the flow of NADW amounting to ~18 ± 7 Sv (Frajka-Williams et al., 2012). In contrast, Hecht et al. (1997), Price and Yang (1998), and Wu et al. (2007) ascribed a more positive role to MOW in maintaining AMOC, which accordingly might slow down by as much as 15% without MOW. In turn, Bigg and Wadley (2001) postulated an enhanced influence of MOW on AMOC intensity for glacial periods.

To better constrain the potential role of MOW-borne salt, we compare the two most prominent late Pliocene changes in the flow of MOW established in this study with the coeval evolution of NADW ventilation as a reflection of AMOC intensity. In summary, the evidence

Table 1

Average estimates for bottom water salinity (BWS) and density (BWD) at sites 978, 548, and 982, displayed for various hydrologic regimes of the Pliocene as defined in the text, Section 5.1.

<table>
<thead>
<tr>
<th>Hydrological Regime</th>
<th>Mediterranean</th>
<th>North East Atlantic</th>
<th>Rockall Plateau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Site 978</td>
<td>Site 548</td>
<td>Site 982</td>
</tr>
<tr>
<td>Ø BWS (psu)</td>
<td>±0.4</td>
<td>±0.6</td>
<td>±0.3</td>
</tr>
<tr>
<td>Ø BWD kg m$^{-3}$</td>
<td>±1.4</td>
<td>±1.4</td>
<td>±1.4</td>
</tr>
<tr>
<td>Ø BWS (psu)</td>
<td>±0.3</td>
<td>±1.4</td>
<td>±0.3</td>
</tr>
<tr>
<td>Ø BWD kg m$^{-3}$</td>
<td>±1.4</td>
<td>±1.4</td>
<td>±1.4</td>
</tr>
<tr>
<td>Ø εNd</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ø BWD kg m$^{-3}$</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ø εNd</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Today 38.4 1029.0 35.5 1027.7
3a (2.75–2.65 Ma) 39.2 1029.2 36.3 1027.8
3 (2.95–2.6 Ma) 38.5 1028.7 36.95 1027.8
2 (3.3–3.0 Ma) 37.4 1028.2 35.5 1027.9
1 (3.63–4.14 Ma) – – 35.5 –
0 (>3.63 Ma) – – – –

from our data does not support the Mediterranean salt hypothesis of Reid (1979).

First, the distinct minimum in MOW injection around 3.65 Ma (Fig. 6, Regime 0) did not lead to any visible reduction in AMOC intensity (Ravelo and Andreasen, 2000). Later, the most prominent 1.5-psu rise of MOW salinity from 3.5 to 3.3 Ma (Fig. 5; Scenario 1–2 transition) likewise did not translate into any significant rise of lower NADW production. The ventilation record of mid-Atlantic ridge Site 607 (3427 m w.d.; Kleiven et al., 2002) was not affected at all. Only much later after 3.2 Ma, a minor 0.25‰ rise in δ13C marked a slight increase in bottom water ventilation. We only know of a single potential linkage between NADW composition and this most distinct MOW density rise in the

![Fig. 6. Schematic reconstruction of four Pliocene hydrologic regimes (~3.7–2.65 Ma) at sites 548 and 982 to outline past changes in the depth and extent of the Mediterranean Outflow Water (MOW) plume (indicated by two dotted lines) along the northeast Atlantic continental margin as compared to the modern spread of MOW (Ocean Data View; top panel; NODC, 2001, and Schlitzer, 2013). Shifts in the reach and vertical position summarize evidence from temporal and lateral changes in bottom water εNd (Fig. 2b) and density signatures (Fig. 5), moreover from δ13C-based estimates of bottom water ventilation (Fig. 2d). Average salinity isolines of 35.3 and 35.7 psu (compare Table 1) facilitate comparison between the Pliocene time slices and their modern analog. LSW = Labrador Sea Water. NHG = Northern Hemisphere Glaciation.](image-url)
late Pliocene, which is a modest rise in coeval upper NADW ventilation by <0.25% ε18O at Site 999 (2828 m w.d.) in the Caribbean Sea which is filled by upper NADW only (Haug and Tiedemann, 1998). In contrast, contemporaneous ventilation did not increase at far distal NADW sites 704 (2532 m w.d.) and 1092 (1976 m w.d.) in the southern South Atlantic (Andersson et al., 2002). In summary, we cannot completely rule out any role of strongly increased MOW salt advection on the formation of upper NADW, in particular during periods of decreased AMOC. However, presently available evidence suggests that the intensity of middle and lower NADW formation remained largely unaffected.

6. Conclusions

Combined sediment records of radiogenic Nd isotopes (εNd(t)) and of ventilation, temperature, salinity, and derived density changes in bottom waters at West Mediterranean Site 978 and northeast Atlantic margin sites 548 and 982 document the late Pliocene history of changes in the original composition, advection, and progressive dilution of Mediterranean Sea Waters (MOW) in the northeast Atlantic. On the basis of these data we define four hydrologic regimes and draw the following conclusions:

1. εNd signatures show that MOW derivates reached from Gibraltar up to Rockall Plateau over most of the late Pliocene, from 3.6 to 2.75 Ma and once more, after 2.65 Ma, but not from 3.75 to 3.6 and from 2.75 to 2.65 Ma (Regimes 0 and 3a), when the flow of MOW decreased significantly.

2. From 3.6 to 3.45 Ma (Regime 1) bottom water salinities and densities of MOW were low and then increased by ~1.5 psu and 1 kg m$^{-3}$, respectively, between 3.45 and 3.3 Ma, coeval with a long-term warming of bottom waters both at sites 548 and 982. This transition between Regimes 1 and 2 documents a major and long-term intensification of MOW advection and probably resulted in a lowering of the MOW plume by ~500 m.

3. This enhanced flow of MOW matched a clear rise in bottom water salinity and density of West Mediterranean deep waters and a rise in sea surface salinity (Khêlifié et al. 2009). These trends suggest strongly enhanced deep-water convection in the Mediterranean Sea, which was driven by increased aridity of Mediterranean summers and in turn, by a reduction in African summer monsoon intensity as also suggested by pollen records.

4. The increased injection of MOW into the North Atlantic induced a distinct rise in epibenthic δ13C reflecting enhanced bottom water ventilation at Rockall Plateau Site 982. However, this did not translate into any significant strengthening of NADW ventilation and hence provides little support for the hypothesis that a rise in MOW advection may foster North Atlantic Meridional Overturning Circulation.

5. Immediately after 2.95 Ma, our records of MOW show massive changes that mark the onset of Regime 3, suggesting a linkage to the onset of major Northern Hemisphere Glaciation. In particular, we see long-term drops in bottom water temperature and (less obvious) salinity at Site 548 slightly later followed by a culmination in bottom-water ventilation both at sites 982 and 548 from 2.85 to 2.72 Ma. However, no correlative changes occurred at Mediterranean Site 978. Finally, less radiogenic εNd signatures document a temporary disappearance of MOW derivates at Rockall Plateau, the distal end of the MOW plume (Regime 3a) and enhanced entrainment of NAC waters. This event was possibly tied to a drop of the Mediterranean outflow due to major glacial sea-level lowering that led to a reduced aperture of the Gibraltar gateway.

Acknowledgments

We acknowledge Wolfgang Kuhnt, Uwe Pflaumann, and Ann Holbourn for valuable advice with foraminiferal species definition.

Valuable suggestions of three reviewers helped us to streamline our manuscript. Birgit Schneider assisted with Ocean Data View. Roland Stumpf and Anne Osborne helped with sample leaching. Karin Kissling and Claudia Teschner helped with ICP-OES and MC-ICPMS analyses. Silvia Koch assisted with the extraction of Alkenones. Thomas Blanz kindly helped with Alkenone analyses by MDGC. Jutta Heineke kept the clean lab running at GEOMAR and many students helped with careful sample preparation. Samples were provided by the Integrated Ocean Drilling Program (IODP). This study was supported by the “Deutsche Forschungsgemeinschaft” (DFG) and the “Deutscher Akademischer Austausch Dienst” (DAAD).

References

