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note Euclidean vectors while boldface upright serif letters x denote homo-
geneous vectors. Matrices appear as capital letters, where those acting on
Euclidean vectors are denoted by italic font without serifs (as A), while ma-
trices acting on homogeneous vectors are denoted by upright serif letters (as
A). Functions are indicated by typewriter font T with the argument in square
brackets [arg], while matrices are indicated by round brackets.



Chapter 1

Introduction

1.1 Motivation

In the �elds of photogrammetry, robotics, and computer vision often feature-
based approaches are applied to obtain correspondences between di�erent
images. Such features are local image regions with special properties that
depend on the type of feature detector used, e.g. corners. During the last
ten years there has been tremendous progress in feature-based matching of
images taken from signi�cantly di�erent viewpoints. Before, correspondences
between unknown images could only be obtained automatically for quite
restricted scenarios, e.g. if the camera position change - the baseline - between
two images was small (compared to the distance to the imaged objects) and
camera orientation and zoom level were approximately equal in the images.

Using the idea of intrinsic scale or shape of a local region feature, cor-
respondence search can nowadays better adapt to the variation of a region
between di�erent images. Even in wide-baseline scenarios, i.e. where corre-
sponding regions in two images can look signi�cantly di�erent, e.g. due to
perspective e�ects, scale, shear, or rotation, correspondences can be obtained
automatically. Linearly normalizing the local region and then computing ro-
bust signatures that tolerate some inevitable inaccuracies allows to handle
large parts of this variation. Using these methods it is possible to search
the internet for photos similar to a query image [Jegou et al., 2008], to per-
form automatic panorama creation from hand-held cameras[Brown and Lowe,
2007] or to reconstruct objects or scenes from web-databases, photographed
by thousands of di�erent users [Snavely et al., 2006].

Many of these approaches follow three steps: First, detect interesting re-
gions (features) in a query image. Then, from the signature of each local
region, �nd potential correspondences with similar signatures in other im-
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2 CHAPTER 1. INTRODUCTION

ages. Third, geometrically verify correspondences and remove those that are
not consistent with the majority, e.g. those that vote for a di�erent camera
motion. While there has been tremendous progress in the �rst two steps, in
the geometrical veri�cation and estimation often heuristics are used or they
are based solely upon the pure position: In both tasks, the relative rotation,
shear or scale between corresponding regions seems often to be seen as an
overcome nuisance, and the information it carries has largely been ignored
so far.

The main goal of this thesis is therefore to derive a geometric primitive
that represents not only the position but also the other geometric properties
carried in the local image features developed during the last decade, to pro-
pose a theory how these primitives are related given important image trans-
formations and to show how the local region correspondence information can
be exploited in obtaining the unknown image relation. This allows interesting
applications, e.g. object pose or surface normal estimation from a single fea-
ture correspondence. Since not only the position is subject to measurement
uncertainty, but also the other parameters of the feature, also a framework
for embedding uncertainty is required and the estimation primitive needs to
be compared to other existing primitives in geometric estimation. The �rst
part of this thesis is dedicated to these questions.

One possible application of using feature correspondences is to track a
camera, i.e. to precisely compute its position and orientation parameters
during an image sequence or a video, when the camera is moved. Keeping
track of these camera parameters is particularly important in the context of
augmented reality, e.g. when virtual 3D objects or graphics are placed into a
live broadcast and must appear as if they were in the scene. Recent systems
for sports coverage for instance can already display distances in 3D or show
important information on-pitch, i.e. it seems as if the information is shown
within the scene. If however, this information must be shown continuously
and consistently even when the camera rotates or moves, the problem is much
harder. The same applies to industrial augmented reality, where assembly
instructions are visualized �xed to the workpiece in 3D for the technician
wearing a see-through display. In both cases there may be motion present in
the scene, e.g. the hands of a technician or moving persons.

A few systems exist that can compute the pose of a camera in real-time,
but most require the scene to be set up with special calibrated markers or
are prone to drift on long sequences. Both in television and in industrial
environments it it desirable to have a camera tracking system, which does
not drift even after minutes or hours of tracking and which is �exible enough
to be applied outside of a calibrated studio environment and without ar-
ti�cial markers in the scene. The second big contribution of this thesis is
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therefore the proposition of such a markerless, drift-free camera tracking
system. The idea is that in an o�ine phase, a free-form surface model of
the environment is built up. Particularly around the most useful sparse 2D
features from an initial structure from motion approach, the exact surface
geometry is reconstructed, allowing a representation well-suited for analysis-
by-synthesis methods on the graphics hardware. The reconstructed free-form
surface model can then serve as an absolute reference in an online phase, this
way preventing drift accumulation. To cope with moving scene content, the
system is proposed to be based on a wide-angle camera, e.g. equipped with a
�sh-eye lens. This way the camera always sees large parts of the static scene
and the e�ects of camera rotation are minor.

Main Contributions

The main contributions of this thesis can be partitioned into three groups:
First, the derivation of a novel primitive for geometric estimation, well

suited for state-of-the-art local image features. The model was proposed in
[Köser et al., 2008], and in [Köser and Koch, 2008a] it was related to conic
correspondences and triplets of points. In this thesis the framework for the
primitive is however extended further, e.g. to allow for incorporating uncer-
tainty and statistical testing. Furthermore, an alternative, more physically
motivated, interpretation is given. In [Köser and Koch, 2008b] it has been
shown how to improve feature correspondences and how the model relates to
a�ne template tracking.

Second, speci�c problems have been solved by application of the general
constraints. Particularly camera pose estimation for a wide range of cam-
era models can be achieved from a single feature correspondence [Köser and
Koch, 2008a]. It is also shown how a general homography can be computed
from two or more feature correspondences and how the surface normal di-
rectly evolves from a single feature correspondence in calibrated cameras.
Using the ideas of the previous paragraph, also a minimal parameterization
could be found for the conjugate rotation and it could be shown that this
special in�nite homography has seven degrees of freedom [Köser et al., 2008].
Also algorithms to estimate a conjugate rotation belong to this second group
of important contributions.

The third group of contributions is related to the camera tracking sys-
tem based on free-form surfaces. Here a good scene representation could
be shown, suitable for analysis-by-synthesis methods exploiting the graph-
ics hardware, as initially presented in [Köser et al., 2006a], evaluated with
respect to model detail in [Köser et al., 2007b] and shown in context of a
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large system in [Köser et al., 2007a]. Particularly the absence of drift and
the independence of pre-calibrated markers are important. Also the special
properties of �sh-eye cameras were exploited and a system has been pre-
sented that is robust against lighting changes and moving persons although
a mainly static scene is assumed.

Structure of the Thesis

The thesis is structured in the following way: In the next section, basic con-
cepts required for understanding the work are presented. Then the previous
work on image-based primitives for geometric estimation is discussed. The
novel concept of the di�erential constraints from a�ne feature correspon-
dences is then derived in chapter 4, including representation, measurement
and uncertainty handling. In chapter 5 the derived concepts are applied
to several problems of computer vision such as estimating surface normals,
homographies or camera poses. Each of the solutions is evaluated and dis-
cussed in this chapter. In the second part of this thesis, the focus is changed
to free-form surfaces, which provide a better representation for curved three-
dimensional structures and are suitable for analysis-by-synthesis methods on
the graphics hardware. In chapter 6 a complete system for camera tracking
is described, evaluated and discussed, followed by a conclusion in chapter
7. Detailed and longer derivations for certain topics can be found in the
appendix.



Chapter 2

Basic Concepts

This chapter provides the required mathematical notations and models upon
which this thesis is based.

2.1 Camera Model and Geometry

Here the image creation process is described in terms of geometrical consid-
erations in 3D space.

2.1.1 Projective Geometry and Notation

To simplify the mathematical relations, the notation of projective geometry
is used, which embeds a space Rn into a space of one dimension higher,
called Pn. Additionally, this space contains the points which are de�ned by
intersection of two parallel lines, called ideal points. In P3 all ideal points
form the plane at in�nity π∞, while in P2 the ideal points form the line at
in�nity (also referred to as l∞). Formally, Pn is de�ned as

Pn =
{
x ∈ Rn+1|x 6= 0

}
. (2.1)

Each point x ∈ Rn corresponds to an equivalence class depending on some
λ 6= 0 in Pn:

x =

 x1

...
xn

 ≡


λx1

...
λxn
λ

 = x (2.2)

while the ideal points (xn+1 = 0) do not have a representation in Rn.

5



6 CHAPTER 2. BASIC CONCEPTS

The left hand vector x is called Euclidean while the right hand side
x is called a homogeneous vector and the 1-based indian-arabic subscripts
indicate a speci�c component of a vector (e.g. the z-component of a 3D vector
x would be referred to by x3). Throughout the document, boldface italic
serif letters x will always denote Euclidean vectors while boldface upright
serif letters x denote homogeneous vectors. For matrices serifs are not used,
so that matrices acting on Euclidean vectors are denoted as A, while matrices
acting on homogeneous vectors are denoted as A.

To switch between the representations and make notation easier two
transformations will be de�ned:

hom : Rn → Pn : hom


 x1

...
xn


 =


x1
...
xn
1

 (2.3)

euc : {x ∈ Pn|xn+1 6= 0} → Rn : euc


 x1

...
xn+1


 =

 x1/xn+1
...

xn/xn+1

 (2.4)

As a consequence, an a�ne transformation or central projection in euclidean
space will become linear in projective space. However, the transition from
projective to Euclidean space incorporates a division (equation (2.4)). This
division can render a linear function in projective space non-linear in Eu-
clidean space.

Since problems in Pn (e.g. equation systems) can often be solved using
methods from Rn+1 and vice versa, the above function de�nitions are used
in the remainder of this thesis in an extended sense, i.e. so that Rm+1 and
Pm may both appear in domain and codomain and the interpretation - if
required at all - is given by the context.

2.1.2 Geometric Objects

A point in an image can be represented by a vector of R2 or P2 and a point in
3D space by a vector of R3 or P3. Although in this section the homogeneous
representation is followed, it will be the case that in later sections the Eu-
clidean notation is sometimes preferable, such that the representation has to
be switched. Nevertheless, corresponding letters x and x refer to the same
thing and are related via equations 2.4 and 2.3.

Apart from the point used above, the most interesting geometric entities
in this thesis are planes, lines and conics. Like points, lines in the plane can
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be represented as 3-vectors in P2, where all points x which lie on the line l
ful�ll

lTx = 0 (2.5)

It is easy to see that the line l through two points x and y is de�ned by the
cross product of the two points:

l = x× y (2.6)

which can equivalently be written using the cross product matrix:

[x]× =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 (2.7)

as
l = [x]× y (2.8)

Points are said to be dual to lines in P2. In P3, points are dual to planes and
the plane representation π ∈ P3 is analogue to the line representation in P2,
since all points on the plane must ful�ll:

πTx = 0 (2.9)

For planes in Euclidean space the �rst three components n = (π1, π2, π3)T

de�ne a vector n orthogonal to the plane. The ratio of the fourth component
π4 and n's norm de�nes the distance of the plane to the origin. Additionally,
the plane at in�nity is described as π∞ = (0, 0, 0, 1)T and one veri�es that
πT
∞x = 0 for all ideal x ∈ P3.
Apart from the linearly, implicitly de�ned objects, there are also quadrat-

ically, implicitly de�ned objects, which are interesting for this thesis. In P2

they are called conics (e.g. ellipses, hyperbolas, ...) and in P3 quadrics (e.g.
ellipsoids,...). Only the conics are introduced here, however, for the quadrics
basically the same equations hold in the higher dimensional space. A conic
C is de�ned as the set of points x ∈ P2 for which the following equation is
ful�lled:

xTCx = 0 (2.10)

The conic's homogeneous representation is a symmetric 3×3 matrix C with
only �ve degrees of freedom because an overall scale of the matrix does not
change the above equality and thus not the set of points. According to their
eigenvalue structure, conics can be classi�ed into di�erent proper conics Cp

(e.g. ellipse, parabola, hyperbola) with full rank

rank [Cp] = 3 (2.11)
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and improper conics Ci (e.g. single line, two lines, single point) with a rank-
de�ciency. Since the improper conics have rank less than three, their deter-
minant must vanish:

det [Ci] = 0 (2.12)

Conics that do not consist of any real points are called virtual, such as the
absolute conic represented by the identity matrix. Apart from the point
conics C considered so far, there are also line conics C∗, which represent the
set of lines tangential to the point conic C. If C has full rank, then the dual
conic C∗ can be obtained by

C∗ = C−1 (2.13)

In P3 analogous concepts exists, and the quadratic equation in general implies
a surface here, which is called quadric Q. Each point on the surface must
ful�ll the quadric equation and the dual to this point quadric Q is called the
plane quadric, or the dual quadric, Q∗. For a more detailed presentation of
conic properties and of projective geometry, the reader is referred to [Hartley
and Zisserman, 2004].

2.1.3 Rotation

Rotations are very important operations in Euclidean space which preserve
the norm of a vector and the angle between two vectors before and after the
transformation. In R2 a rotation R2D of a vector v2D by an angle φ around
the origin can be represented by the linear Euclidean matrix operation:

v′2D = R2D v2D =

(
cos [φ] −sin [φ]
sin [φ] cos [φ]

)
v2D (2.14)

Therefore, a scalar φ is su�cient to uniquely determine such a rotation. In
R3 a rotation is always described by an angle φ ∈ R around an axis t ∈ R3

with ‖ t ‖= 1 through the origin, leading to the Rodrigues formula for a
rotation matrix ([Hartley and Zisserman, 2004], pp. 584):

R3D [t, φ] = I3×3 + sin [φ] [t]× + (1− cos [φ])[t]2× (2.15)

A 3D rotation has eigenvalues {1, eiφ, e−iφ}, where the unit eigenvalue cor-
responds to the rotation axis, which is an eigenvector. All points on the
rotation axis are �xpoints, which are unchanged by the rotation. A rotation
in 3D is uniquely determined by the rotation axis and the rotation angle,
where the rotation axis has only two degrees of freedom and can be param-
eterized by two angles (as in spherical coordinates). 3D rotation allows for
di�erent parameterizations, such as
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1. normalized axis and angle (4 parameters, axis has norm 1)

2. normalized axis × angle

3. quaternion (4 parameters, quaternion has norm 1)

4. Euler angles (3 angles, world-�xed or object-�xed, gimbal lock problem)

5. 3×3 rotation matrix (9 parameters, rows and columns orthonormal and
matrix determinant 1)

6. �rst two columns of 3×3 rotation matrix (6 parameters, columns or-
thonormal)

7. ...

Rotation matrices in 2D and 3D are always orthonormal with determinant
1. Within the above parameterizations all have their advantages and draw-
backs and a suitable parameterization is application speci�c. For instance,
the over-parameterizations with more than three parameters usually act in a
simpler way on the points to be rotated than the minimal parameterizations
with only three parameters. When rotating points, usually the quaternion
or rotation matrix representation is used. On the other hand there exist
non-linear constraints between the parameters in the over-parameterizations.
When estimating the parameters these constraints have to be taken into
account to guarantee a "valid" rotation. Instead of estimating a rotation
matrix, it is often more convenient to estimate a minimal or small set of
parameters.

2.1.4 Camera Model

To derive the camera model used in this thesis, the ideal pinhole camera is
inspected �rst. In such a camera the light rays that fall from the scene onto
the image plane all go through the pinhole. The pinhole is therefore also
called the center of projection or simply the camera center. For simplicity, it
is assumed that this center is the origin now, that the normal of the image
plane is the z-axis and that the camera can see only objects which have
positive z-components. The optical axis is de�ned as the ray orthogonal on
the image plane which goes through the camera center. The image plane shall
be at z=1 with an image coordinate system attached to this plane coincident
with the x- and y-axes of the world coordinate system. Then, a Euclidean
3D world point xW is mapped to a Euclidean 2D image point xI by

xI = euc
[
xW
]

(2.16)
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If the camera is now moved away from the origin to position C in 3D
Euclidean space and rotated by a rotation matrix R, a rigid transformation
has to be incorporated when projecting points of the world with this camera.
First, the points are transferred into the camera coordinate system and then
projected. In projective space such a pinhole camera can be modeled by a
3×4 projection matrix P = (RT| − R

TC). The translation in R3 becomes
linear in P3, so that now homogeneous 4-vectors xW ∈ P3 are projected onto
homogeneous 3-vectors xI ∈ P2.

xI ' (RT| − RTC)xW (2.17)

Here, the '-sign means that these vectors are equal up to an unknown scale,
representing the equivalence class (cf. to equation (2.2)). If the projection x
is not an ideal point, the 2D Euclidean image coordinates can be obtained:

xI = euc
[
xI
]

= euc
[
(RT| − RTC)xW

]
(2.18)

If the 2D coordinate system on the image plane is sheared, scaled or dis-
placed compared to the world coordinate system, such e�ects can be encoded
in a calibration matrix K(cf. to [Hartley and Zisserman, 2004]). This ma-
trix K is an upper triangular matrix and holds the principal point (cx, cy)

T,
where the optical axis intersects the image plane in image coordinates, the
focal length f , a skew parameter s and the aspect ratio a:

K =

 f s cx
0 a f cy
0 0 1

 (2.19)

Since K is an a�ne transform of the 2D image plane, its application is a
linear operation in projective space and the homogeneous 3D world point
xW would then be mapped to a homogeneous 2D image point xI by

xI ' K(RT| − RTC)xW = PxW (2.20)

where P is called the projection matrix. Writing this completely in Euclidean
coordinates, this looks like

xI = euc
[
xI
]

= euc
[
K(RT| − RTC) hom

[
xW
]]

(2.21)

The simple relation of equation (2.20) can also be extended to other objects
such as plane quadrics Q∗ in space, which are mapped to line conics C∗ in
the image using the projection matrix P:

C∗ ' PQ∗PT (2.22)
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To obtain the relations for point conics or quadrics, simply the dual repre-
sentation has to be used.

Unfortunately, in real cameras the pinhole cannot be in�nitely small be-
cause no light would pass through. Therefore, real cameras typically contain
lenses, which collect and focus the light onto the image plane. Such lenses
however do not strictly follow the pinhole model and particularly for wide-
angle lenses, geometric distortion can be observed. Di�erent extended models
have been proposed to describe the lens behavior, of which exemplarily the
polynomial radial distortion model[Heikkilä and Silvén, 1997] is shown here.
In this model the distortion is compensated phenomenologically from the
observation that the distortion increases or decreases symmetrically from a
center of distortion in radial direction. This is known as barrel or cushion
distortion. A polynomial of degree two, four or even higher is used to correct
for this distortion.

In fact there are also models for tangential [Heikkilä and Silvén, 1997]
and other distortion, models for �sh-eye (or equidistant) projection [Micusik,
2004, Scaramuzza et al., 2006b], for equiangular[Fleck, 1995] and other pro-
jection models [Perwass and Sommer, 2006, Tsai, 1987, Geyer and Daniilidis,
2001]. In most parts of this thesis no particular of these models is required.
Rather, when talking about calibrated cameras, it is assumed that for a po-
sition in the image coordinate system the corresponding ray in the camera
coordinate system can be obtained, that this mapping between image posi-
tions and rays is su�ciently smooth to be locally linearizable and invertible.
It is also assumed that the camera can be modeled well by a single center of
projection, which is even true for certain omnidirectional cameras.

In this case the intrinsic parameters can be calibrated beforehand and
compensated, allowing to reason about rays in space. Image uncertainties can
be propagated to ray uncertainties. If the intrinsic parameters are known, the
remaining degrees of freedom of the camera are only in the external camera
parameters, the position and orientation (the pose), of the camera.

2.1.5 Pose

The parameters of a calibrated camera as described in section 2.1.4 can be
separated into the external parameters (the position and orientation in 3D
space), which will be called the pose, and the internal parameters (like focal
length, principal point, ...), which will be called the calibration. The pose has
six degrees of freedom (three for translation and three for orientation) and
can be parameterized in di�erent ways (compare section 2.1.3 for di�erent
rotation parameterizations). The pose of a camera de�nes a transformation
Tc1 between a point's coordinates Xw ∈ P3 in the world coordinate system
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and Xc1 ∈ P3 in the camera coordinate system:

Xw = Tc1X
c1 =

(
R C

1

)
Xc1 (2.23)

Xc1 = T−1
c1 Xw =

(
R

T −RTC
1

)
Xw (2.24)

If a second camera is given by its pose transformation Tc2 in the world, its
pose transformation can also be represented in the �rst camera's coordinate
system:

Tc1
c2 = T−1

c1 Tc2 (2.25)

The column vectors of Tc2 can simply be transformed from global coordinates
to local coordinates in the �rst camera as ordinary points. Consequently, in
the �rst camera's coordinate system the �rst camera itself is at the canonic
pose (represented by the identity transform I4×4):

Tc1
c1 = T−1

c1 Tc1 = I4×4 (2.26)

2.2 Photometric Image Creation

So far only geometric considerations have been applied. The image content,
the color or the grey value has not been de�ned so far.

2.2.1 Plenoptic Function

In [Adelson and Bergen, 1991] Adelson and Bergen introduced the plenoptic
function to model what can be seen in the world. They state that objects in
the world re�ect light from di�erent sources in various directions. These light
rays do not interact and the plenoptic function simply represents the super-
positioned intensity of all incoming light rays for each wavelength, position
in space, each viewing direction and possibly also time.

Pl [θ, φ, λ, t, x, y, z] : R7 → R (2.27)

Therefore this is a very high-dimensional function and rather a theoretical
construct than a practical representation of the appearance of a scene or the
world. However, this way it models the visual e�ects that can be seen in the
real world and allows for reasoning about visual phenomena.
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2.2.2 Piecewise Continuous Surfaces

A more compact model often used is that of a piecewise continuous surface
model. In this case a scene is not described by the set of all possible light
rays but rather by all objects in the scene. If the light sources and the surface
properties of the objects are known, the plenoptic function is also determined.
Often the simplifying assumptions of constant lights and Lambertian surfaces
are made. In this case the image brightness constancy assumption (IBCA)
can be made, which states that corresponding points in images must have
the same intensity. Constant lighting means that the illumination does not
change over time, which may be violated if clouds move in front of the sun.
Lambertian surfaces (cf. also [Jähne, 2005], p. 191) are perfectly di�use so
that points on such a surface look the same from all viewing directions. Such
assumptions are often good for non-shiny objects, but they are not valid e.g.
for highly re�ective or partially transparent materials as metallic paints or
water.

2.2.3 Camera Hardware, CCD

The cameras used for the experiments in this thesis use CCD sensors. There-
fore the image creation process is described here for this camera type, al-
though the theoretical and geometrical considerations apply also to other
cameras. The image plane in a CCD camera is a �nite grid of approximately
rectangular CCD elements. The intersection of the optical axis with this
grid is called the principal point and the ratio of width and height of one
such CCD element is called the aspect ratio. If the grid-axes are orthogonal,
this results in a zero skew, otherwise the skew is proportional to the scalar
product of the axes (see also equation (2.19)). When light rays go through
the pinhole of the camera and hit the sensor, the electro-magnetic power is
integrated for some time (the shutter time) and results in charge of the CCD
element.

It is assumed in this thesis that the lens system and the spatial integra-
tion across a CCD cell actually provides a low pass �lter that suppresses
high frequency components so that no aliasing will occur when the image
signal is "sampled" at the sensor plane. If too much light energy falls into a
cell and the CCD becomes saturated, charge can �ow to neighboring CCD
elements and can cause blooming e�ects, in the worst case a whole line can
get saturated by this phenomenon resulting in a disturbing white line in the
image (e.g. when the sun is in the image).

In the last step, the charge is read out, possibly ampli�ed and digitized.
The resulting intensity value is then stored in the image. The range from
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the minimum observable light energy to the energy that saturates a CCD
is called the dynamic range of the chip. More details about image creation
using CCD chips can be found e.g. in [Jähne, 2005, p. 22].

2.2.4 Lens E�ects

In the ideal pinhole camera model the camera center is in�nitely small - a
point. For light to pass through in real cameras, however, this pinhole must
have a �nite size, the aperture. The larger the aperture is, the more light
can be measured on the sensor and the better the signal-to-noise ratio can
become for the image. Unfortunately, with increasing aperture, the image
would become more and more blurred because di�erent light rays can bypass
the pinhole in parallel and violate the camera model. To avoid this blurring
and to collect the light, lenses are used in digital cameras, which themselves
cause several deviations from the ideal model:

Focus and Photometric Distortion

Lenses collect light rays traveling through di�erent propagation paths from
a point in space to the lens and focus these onto a point behind the lens.
For objects at a certain distance this point is on the chip and the object is
in focus. Objects at other distances are out of focus resulting in an unsharp
image of the object. In this thesis it is assumed that the lens �ts the scene
distance so well that such defocus distortions can be neglected. Also di�erent
wavelengths behave di�erently when passing through the lens, which is known
as chromatic aberration and which can cause deviations from the ideal model.
These e�ects are also considered neglectable in this thesis.

Re�ection E�ects

Real lenses, in particular wide angle lenses and lens systems su�er from
within-lens re�ections, which can create arti�cial structures e.g. such known
as Newton's rings in the image. These e�ects are not modeled here, but they
can be handled on a higher level as general model violations.

Vignette E�ects

Due to the physical properties of the lens, it typically collects more photons
near the optical axis, while the light bundles in the outer lens regions are
sparser. This way a white wall does not appear with constant intensity
but the intensity is typically lower towards the image border in a radially-
symmetric fashion. This gives the impression of a vignette and is thus called
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the vignette e�ect. The vignette e�ect can be calibrated beforehand and the
image can be approximately de-vignetted before operation, so that this e�ect
is assumed to be compensated in the following.

2.2.5 Brightness Models

A model often applied in correspondence estimation is the image brightness
constancy assumption. It basically states that corresponding points in two
images have the same intensity value (cf. to [Jähne, 2005, p. 425]). This is
often a good assumption for controlled indoor scenes with Lambertian sur-
faces. In scenes with very bright and very dark parts however, the aperture
and shutter of the camera are often steered dynamically so that the observed
scene parts �t the dynamic range of the CCD well. Also changing illumina-
tion (e.g. due to weather conditions outdoor) and non-Lambertian surfaces
can violate this assumption.

One of the simplest models to compensate for such e�ects is to relax the
strict constancy assumption to a local a�ne brightness change, i.e. di�er-
ent intensity values of corresponding points are explained by a scale and an
o�set, which are constant for a whole region. Before matching regions, the
intensities of each region are transformed so that their mean is zero and their
standard deviation equals one. This way the matching process is invariant
under a�ne brightness changes between the images. A similar idea has al-
ready been applied for a long time when matching with normalized cross
correlation (cf. e.g. to [Lewis, 1995]).

Another strategy is to assume a model for the brightness change and
estimate the parameters of the model from the image data as discussed in
[Baker et al., 2003]. For instance, instead of requiring each point in a region
to have the same grey value in any two images, it is assumed that there exists
a constant scale a and o�set o, such that the intensity in a template T can be
transformed into the intensity of some second image I, for all corresponding
points in a region.

I
[
xI2
]

= aT
[
xI1
]

+ o (2.28)

Or, if the model contains the (relative) photometric camera parameters
[Kim et al., 2007], the region may even be the whole image.

2.3 Relations between Local Regions in a Scene

This thesis deals with the estimation of the relations between views of a scene
and the scene. The important relations are introduced in the following sec-
tions and their properties are described. All of these relations are parameter-
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ized, i.e. the type of transformation is �xed but the actual function depends
on some parameters. Each of these transformations can be parameterized by
a minimal set of parameters and the number of these parameters is called
degrees of freedom (DOF). Such minimal parameterizations are important
concepts in estimation, because not only the parameters can be estimated
but also their uncertainty, providing a measure of quality for the parame-
ter estimate. Using more than the required number of parameters (over-
parameterization), there exist constraints between the parameters, which
must be considered (compare also 2.1.3). Using over-parameterizations, the
concept of uncertainty estimation requires further e�ort and when the inter-
parameter relations are not known or not enforced more data than intrinsi-
cally necessary is required to estimate a transformation.

In the next sections the most important transforms for this thesis are
described starting from the simplest 2D transforms.

2.3.1 Displacement, Euclidean, Similarity and A�ne

Transformations

One of the simplest transformations between two images is the displacement,
where a transformed point is obtained by adding an o�set vector t to the
original point. A slightly more powerful transform is the Euclidean transform,
which additionally allows a rotation of an angle α, but which still preserves
Euclidean distances between points. The similarity transform additionally
allows for an isotropic scale λ of coordinates but still preserves shape so
that circles stay circles. All of these transforms can be expressed by the
following equation, where for the Euclidean transform λ is �xed at 1 and for
the displacement additionally α is �xed at zero.

xI2 =

 λcos [α] −λsin [α]
t

λsin [α] λcos [α]
0T

2 1

xI1 xI1,xI2 ∈ P2 (2.29)

Consequently, the displacement has two DOF, the Euclidean transform has
three DOF and the similarity transform has four DOF.

A full linear transform with subsequent translation is called a�ne trans-
form and has six DOF. Compared to the similarity transform it allows for
anisotropic stretch of some magnitude and in some direction (shear). An
a�ne transform for instance relates two ideal perspective images when only
the internal camera parameters Ki(see equation (2.19)) di�er between these
images. The a�ne transform can be separated into linear stretch and dis-
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Figure 2.1: A clockwise hierarchy of transformations

placement and can e�ciently be expressed in homogeneous coordinates as

xI2 =

 aT
1 t
aT

2

0T
2 1

xI1 (2.30)

In Euclidean coordinates this reads as

xI2 = euc

 aT
1 t
aT

2

0T
2 1

 hom
[
xI1
] (2.31)

=

(
aT

1

aT
2

)
xI1 + t (2.32)

A�ne transforms are also important because they cover the zero and �rst
order parts of a Taylor series (see section A.1). Therefore they can be used to
locally linearize non-linear functions. Also the displacement, the Euclidean
and the similarity transform are a�ne transforms.

Jacobian for Transformations of the 2D Euclidean Plane

A very important aspect of a transformation in this thesis is its Jacobian,
i.e. the matrix of its �rst partial derivatives with respect to Euclidean 2D
position. Intuitively, when a small step is taken in x-direction in one image,
the �rst column of the Jacobian at this position encodes how large a step is
and in what direction it will be taken in the other image under the transfor-
mation. The second column of the Jacobian states the same for a small step
in y-direction. The Jacobian therefore encodes local magni�cation, shear and
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rotation. In computer graphics, the Jacobian of a texture transformation at
a position is therefore called the footprint [Chen et al., 2004] and is important
for anti-aliasing e.g. in projective texture mapping[Heckbert, 1989].

The Jacobian of the above a�ne transform in Euclidean space is

∂xI2

∂xI1
=

(
aT

1

aT
2

)
(2.33)

and therefore constant in the whole Euclidean plane.

2.3.2 General Homography

A projective transform - or homography - is a linear mapping in projective
space. Section A.2 characterizes 1D homographies in detail, which provides
valuable insights into this type of transformation (curve sketching: poles,
critical points, limits, ...) and what "linear in projective space" means in
Euclidean space. Since 2D images are the basis for this thesis, in the following
only homographies in P2 are considered:

xI2 ' HxI1 (2.34)

Here, H is a 3×3 matrix with nine entries:

H =

 hT
1 t
hT

2

hT
3 λ

 h1,h2,h3, t ∈ R2, λ ∈ R (2.35)

Since H acts in projective space, it has only eight degrees of freedom and
is equivalent to all other homographies, whose matrix representation equals
H up to a non-zero scaling factor. Since 03 is non an element of projective
space P2, all points that are algebraically mapped to 03 must be excluded
from the domain. Regular 3×3 matrices, which have full rank, map only
03 to 03, so that regular homographies are de�ned for all elements from P2.
The last column of such a homography is the image of the origin, i.e. the
point where the origin is mapped to. The last line on the other hand is the
pre-image of the line at in�nity l∞, i.e. the line which is mapped to in�nity.
For a�ne mappings, i.e. homographies which do not change l∞, the last row
is therefore already l∞.

When the homography mapping is regarded in Euclidean space (excluding
the ideal points), the corresponding function H is nonlinear (as explained in
A.2):

xI2 = H
[
xI1
]

= euc
[
H hom

[
xI1
]]

(2.36)
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Homographies preserve collinearity, i.e. if three points are collinear in
one image and the image is mapped with a homography, then a line can be
found on which all of the three points lie. General homographies are often
used to describe mappings between images or a scene plane and an image
in uncalibrated settings, i.e. when the internal camera parameters are un-
known. When something is known about the camera or the setting, often
specialized homographies can be used that form only a subset of all possi-
ble homographies. Therefore they depend on fewer parameters and can be
estimated with more redundancy or fewer data. Often their parameteriza-
tion directly provides a geometrical interpretation. The following subsections
give an overview about some of these homographies that will be used in this
thesis:

In detail, the inspected homographies describe relations between planes,
e.g. when an uncalibrated pinhole camera is only rotated (conjugate rotation,
mapping across the plane at in�nity), the mapping between two planes in
Euclidean space (perspectivity), or when two pinhole views observe only a
single plane.

Parameterization

The simplest parameterization of a general homography is probably using
the nine entries of the 3×3 matrix. This way, all possible homographies
can be reached using the parameters and there is no singularity. However,
since two matrices that di�er only by a nonzero scaling factor de�ne the same
transformation, this parameterization is redundant and uses more parameters
than necessary. Instead, it is possible to use only the ratio of the eight other
matrix entries to the lower right matrix value:

pH(H) = euc [vec [H]] ∈ R8 (2.37)

This parameterization is only de�ned if H33 6= 0, i.e. when the origin is not
mapped to the line at in�nity. This assumption is trivially true when the
origin in one image maps to a �nite position in another image when applying
H. Other parameterizations use the images of four de�ned points in an
image (e.g. the corners) or parameterize relative to the matrix entry with the
largest absolute value, which is unlikely to become zero if the parameters are
changed only a little, e.g. in local optimization.

Jacobian

If H is considered such that the 3×3 homography matrix H acts as a mapping
from R2 to R2, the homogenization must be taken into account and the



20 CHAPTER 2. BASIC CONCEPTS

mapping becomes non-linear:

H : R2 → R2 : H [x] = euc [H hom [x]] =

 hT

1x+tx

hT

3x+λ

hT

2x+ty

hT

3x+λ

 (2.38)

Here t hat been substituted by (tx ty)
T. The Jacobian is not constant, but

a function of x:

∂H

∂x
(x) =

1

(hT
3x+ λ)2

(
hT

1 (hT
3x+ λ)− hT

3 (hT
1x+ tx)

hT
2 (hT

3x+ λ)− hT
3 (hT

2x+ ty)

)
(2.39)

It can however easily be seen that when h3 is the zero vector and λ = 1, H
is purely an a�ne transform and its Jacobian is constant (regarding x) and
consists solely of h1 and h2.

2.3.3 Perspectivity

Figure 2.2: A Perspectivity maps between two planes in Euclidean Space

A 2D perspectivity is a special kind of homography (cf. also to [Hartley
and Zisserman, 2004], pp. 34), which has only six degrees of freedom and
which is particularly important for mappings between planes in Euclidean
space. A locally planar geometry at the origin of 3D space is assumed to face
into z-direction and to have x, y-coordinates attached to it, which coincide
with the x, y coordinates in 3D space. If a perspective pinhole camera is
now moved to position C with orientation R (which has rows rT

i ) and with
internal camera calibration K, a point pS in space is mapped to an image
point pI by the camera as follows(cf. to [Hartley and Zisserman, 2004, p.
157] for details):

pI ' K(RT| − RTC)pS (2.40)
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In the following K = I3×3 is assumed, i.e. a calibrated camera (see also section
2.1.4) and RT is replaced by its columns (i.e. the rows of R):

pI '
(
r1 r2 r3 − RTC

)
pS (2.41)

Now have a look at the points on the z = 0 plane to derive the perspectivity:

pI ' (r1 r2 r3 − RTC)(x y 0 1)T = (r1 r2 − RTC)(x y 1)T (2.42)

'

 r̃1 r̃2

t1
t2
1

 (x y 1)T = H pP (2.43)

Here pP are homogeneous points in the plane coordinate system, which are
mapped by H into the image, where H depends only on the pose of the
camera. The six DOF may be parameterized in various ways, e.g. in the
same way as a camera pose or as a homography with additional constraints.

2.3.4 Homography induced by a Scene Plane

Figure 2.3: Two perspective images, which observe the same scene plane, are
related by the homography induced by the plane.

If two cameras observe the same scene plane, all points that lie on this
plane transform with a homography from one image to the other. It is
assumed that the two cameras are given by

P1 = K1(I3×3|03) (2.44)

P2 = K2(RT
2 | − t) (2.45)

Now the homography Hπ between the two images induced by a plane π at a
3D point s in Euclidean space with normal n is (cf. to [Molton et al., 2004]):

Hπ = K2

(
sTnRT

2 − R
T
2 tn

T
)
K−1

1 (2.46)
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The plane at in�nity cannot be decomposed using a Euclidean point and
a normal. In case this plane is used for mapping, the homography depends
solely on the relative camera rotation and the intrinsic parameters as will be
shown in the next section.

2.3.5 In�nite Homography and Conjugate Rotation

Figure 2.4: Two ideal pinhole images are related by an in�nite homography
if the camera center does not change.

The in�nite homography H∞ maps points between two images that have
the same camera center or when the corresponding 3D point is in�nitely far
away.

H∞ = K2RK−1
1 (2.47)

This is the limiting case for the general mapping of the previous section
when the plane moves in�nitely far away. It is an important concept in
projective geometry in general [Hartley and Zisserman, 2004], particularly in
panoramic image mosaicking [Brown and Lowe, 2007, Brown et al., 2007],
self-calibration [Hartley, 1997a, 1994] or when dealing with pan-tilt-cameras
[Capel and Zisserman, 1998]. If the camera calibration is constant (K1 = K2)
H∞ is algebraically a scaled conjugate rotation [Pollefeys and van Gool,
1999], i.e. it has the same eigenvalue structure as a scaled rotation matrix
(cf. to section 2.1.3 for rotation). In [Köser et al., 2008] it has been shown
that the conjugate rotation has seven DOF and a minimal parameterization
has been proposed, which will be derived in more detail in section 5.2.



Chapter 3

Image-based Estimation

Primitives in the Literature

Since a main contribution of this thesis is the introduction and application
of a geometric primitive for local region features, this section reviews the
most important primitives for geometric estimation used so far. Existing
estimation approaches for speci�c relations are then reviewed in the speci�c
section later in chapter 5.

Many people in photogrammetry, computer vision and other research
�elds have been dealing with correspondences to obtain view relations or
scene information. Among the various types of correspondences, there are
symmetric types like image-to-image correspondences, where both matching
parts have the same geometric representation (e.g. 2D image positions for
homography estimation) and asymmetric correspondences that relate points
with lines or ellipsoids with ellipses.

The set of methods to estimate relations like homography or camera pose
can be divided roughly into global and local methods. Global methods use
the whole or a large portion of the image to obtain the transformation. This
can even work if no interesting local structures are present or if an image con-
tains repeated patterns or a signi�cant amount of noise, since they exploit
the whole image data. On the other hand, global methods are usually prone
to local distortions, such as occlusions and dynamics, re�ections or appear-
ance changes. Consequently, the number of applications where an explicit
global transformation warping one image to another in practice is limited:
an example for such an application is panoramic stitching. Among the global
methods are for instance Fourier- or phase-based (e.g. [Castro and Morandi,
1987, Stricker and Kettenbach, 2001, Stricker, 2002]) and color-based or his-
togram based methods [Felsberg and Hedborg, 2007b, Chandaria et al., 2007].

On the other hand there are the local methods, which use only small parts
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of the image. Some of these parts may not be visible in another image and
some may look di�erent. Nevertheless, often many local correspondences can
be established and used for estimation. Therefore such feature-based meth-
ods are less sensitive to local distortions like occlusions or local appearance
changes. Due to their very local view, such local features are often less de-
scriptive and may be similar to other local features, leading to ambiguities in
the local matching. Therefore they usually require a model-based veri�cation
using more global information. The next sections show the most commonly
used primitives for the estimation of geometric objects, starting with simple
points and �nally concluding with local regions, which are exploited in this
thesis.

3.1 Points

In a way, points are among the most simple primitives to think of. Reasoning
about point relations goes back to the very �rst known geometric considera-
tions. Also in the beginning of modern geodesy as a precursor for photogram-
metry Grunert[Grunert, 1841] and Gauss[Gauss, 1843/1844] used points for
land surveying; the point correspondence is probably the most wide-spread
primitive upon which view relations are estimated. A good overview on point
based estimation algorithms for projective geometry is given in [Hartley and
Zisserman, 2004], but point correspondences are also used in pose estimation
[Haralick et al., 1994, Lu et al., 2000, Grafarend and J.Shan, 1997, Grunert,
1841, Zhang and Hu, 2005, Finsterwalder and Scheufele, 1903] or camera
calibration [Scaramuzza et al., 2006a, Tsai, 1987, Micusik and Pajdla, 2006].

Points in images have to be localizable according to some criterion. Cor-
ners for instance can be localized well in two dimensional image space and
often point-based estimation methods use corners, although many other in-
terest point detectors exist. However, also repeatability is of interest, i.e.
the same point needs to be detected in transformed versions of the image
in an image taken from a di�erent viewpoint or under di�erent conditions.
Pioneering analyses in this direction have been performed by Schmid et al.
[Schmid et al., 1998].

In very early works, image processing was basically restricted to line draw-
ings in more or less black and white images. In this context interest points
have been de�ned at intersections of lines or at points on curves with high
curvature, however, this required an explicit extraction of more global con-
tour lines beforehand. A good summary of these early works can be found
in [Tuytelaars and Mikolajczyk, 2008].

Among the �rst interest point operators based on the image signal was
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the one of Moravec [1980], exploiting signal changes in x- and in y-direction
in an image. Foerstner and Gülch [Förstner and Gülch, 1987] considered pre-
cise relocalization of interest points in their detector and used the roundness
of the position uncertainty ellipse as a corner detection criterion. Similarly,
the work of Moravec was extended to general 2D signal changes by Harris
and Stevens[Harris and Stephens, 1988], improving the detector's behavior
under rotation. Shi and Tomasi [Shi and Tomasi, 1994] proposed a detector
that �nds interest points optimal for tracking in videos. Each of the last
three detectors requires two-dimensional structure in a local window, which
is encoded in the structure tensor sometimes also called the second moment
matrix and which resembles the outer product of the gradient summed across
a window. Since then, other approaches for corner detection have been pro-
posed, often for e�ciency reasons, e.g. SUSAN[Smith and Brady, 1995] or
more simple keypoints exploiting an approximation of the Laplacian [Lepetit
and Fua, 2006].

To obtain precise estimates and to solve the correspondence problem,
often regions around the ideal points are considered and the matching is
performed by comparing these regions regarding some measure. Therefore,
the mathematical concept of a point and the real-world process of measuring
the parameters (the position) of such an entity have to be distinguished.
If the point position is actually estimated using data from a �nite region,
this may or may not cause trouble in algorithms expecting in�nitesimally
small entities. Since the goal is usually to construct stable algorithms in
the presence of noise, the disturbance from the �nite support region can be
neglected if they are small compared to other sources of disturbance, e.g.
image noise or mis-calibration of the camera.

Aside from the way how to detect it, the geometrical information carried
in points is also relevant: A point in the image has two degrees of freedom (its
position), a point in space has three degrees of freedom. If a transformation
maps a 2D or a 3D point to a 2D point, this correspondence imposes at most
two constraints onto the transformation.

3.2 Lines and Planes

In projective geometry of the plane, lines and points are dual [Hartley and
Zisserman, 2004]. Therefore, when estimating homographies between images,
many algorithms working with point correspondences work in a dual way
with line correspondences. Automated matching of lines has been studied in
[Schmid and Zisserman, 1997], while structure-from-motion based upon lines
is for example presented in [Spetsakis and Aloimonos, 1990] or [Bartoli and
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Sturm, 2005].
However, compared to points, lines have a more global character because

in one dimension they are in�nitely extended. This can cause trouble in
detection e.g. with occlusions, which local features typically avoid. Also,
although most camera mappings are usually locally well-linearizable, the
straight lines property may be broken in non-ideal cameras and lines in space
map to curves in the image.

Lines in space have four degrees of freedom and a minimal representa-
tion in Euclidean or projective space is involved (e.g. two sphere angles for
direction and 2D-displacement in the plane through the origin perpendicu-
lar to the direction). Planes have only three degrees of freedom and planes
through the camera center also project to lines in the image (e.g. the epipolar
plane[Hartley and Zisserman, 2004]).

Line detection can either be done locally by exploiting the image gradients
[Jähne, 2005, p. 345], using e.g. the Canny edge detector[Canny, 1987] and
grouping edgels or more globally by using Hough transformation [Duda and
Hart, 1972] or related concepts [Thomas, 2007]. If a transformation maps a
3D line or a plane to an image line, this correspondence imposes at most two
constraints on the transformation.

If the correspondence relates a point with a line this imposes only a single
constraint, since the position on the line is unknown and a point being on a
line is a scalar equation.

3.3 Conics, Quadrics and Convex Hull Regions

Conics are curves that result from the intersection of a cone with a plane,
such as ellipses, hyperbolas, parabolas and some degenerated representations
as described in section 2.1.2. Conics can be represented by symmetric 3×3
matrices in projective space P2 (equation (2.10)) and therefore have �ve
degrees of freedom. In images, conic curves are usually detected using a
contour line approach in an analogue way as line segments are detected, e.g.
through Hough transform [de Macedo and Conci, 2007] or using grouping
[Smereka, 2005].

The analogue concept in P3 are quadrics, which are mapped to conics in
the image under the pinhole camera model as described in equation (2.22).
This relationship is exploited for various geometrical problems, e.g. to es-
timate homographies [Kannala et al., 2006], the epipolar geometry [Kahl
and Heyden, 1998], surface normal or camera pose [Ma, 1993], or in self-
calibration approaches [Triggs, 1997, Pollefeys et al., 1998]. If a transforma-
tion maps a conic or a quadric to a conic, this correspondence imposes at
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most �ve constraints onto the transformation because a conic has only �ve
degrees of freedom.

Basri and Jacobs [Basri and Jacobs, 2001, Jacobs and Basri, 1999] worked
on the concept of region correspondence, which describes each region by its
convex hull. This relaxes the assumption of strict elliptically- or conically-
shaped regions to a more general shape. On the other hand the direct in-
terrelationship and explicit projection model between 2D and 3D is lost and
correspondences between regions are then represented by a set of inequalities.
Consequently, tailored optimization approaches are required to exploit such
primitives.

3.4 Intensities

Under the image brightness constancy assumption (sometimes also "bright-
ness change constraint equation", cf. to [Jähne, 2005, 425]), corresponding
points in di�erent images have the same grey value. Since the grey value
is a scalar, this grey-value correspondence imposes only one constraint on
the transformation to be estimated. However, since usually the image can-
not be compactly described in an equation, often linearized versions of such
constraints are used in optimization algorithms, which must start near the
optimum. Then however, the intensity correspondences are algebraically
equivalent to point to line correspondences and can be exploited to estimate
the parameters of the warp between the two images. Each linearized in-
tensity correspondence provides only a single constraint: the projection of
the warp's Jacobian matrix onto the image intensity gradient (cf. to [Baker
and Matthews, 2004]). Applications are gradient-based image registration
[Lucas and Kanade, 1981, Baker and Matthews, 2004], panorama generation
[Jethwa et al., 1998, Szeliski, 2006, Shum and Szeliski, 2000], local homogra-
phy estimation [Astrom et al., 1998] and camera tracking[Koch, 1993]. They
are usually used to optimize low-parametric models with high redundancy.
However, due to their scalar nature these correspondences are extremely sen-
sitive to noise and brightness changes and outliers can hardly be detected in
practice.

3.5 Local Curves and Lines

This section brie�y reviews geometric estimation based on so-called quivers,
which de�ne a set of multiple local line directions, and estimation based
upon small parts of curves. Here, Schmid and Zisserman [2000] used change
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of curvature of planar curves to determine homographies. As for the lines
these curves have to be extracted from the image. To obtain the curvature, a
larger in�uence region is required. The curvature is a measure of how strong
the tangent changes when running along the curve. The principle exploited
here is comparable to a 1D version of the primitive used in this thesis and a
detailed embedding is therefore given in section 4.5.3. When small parts of
curves are considered, e.g. the contours of articulated objects [Grest et al.,
2006], the curve can be replaced by its local tangent allowing to work with
the curve as with a line.

Johansson et al. [2002] introduced quivers, which can be imagined as a
point and a direction (1-quiver) a pair of oriented lines (2-quiver) or a triplet
of oriented lines (3-quiver) intersecting in a point. The 3-quiver can be
imagined as being a 3D corner with its three edges. In projective geometry
these quivers also impose constraints onto the multi-view relations in a scene.
In an image, a 1-quiver has three DOF (position and direction), a 2-quiver
has four DOF and a 3-quiver has �ve DOF. Since the quivers work only
upon directions, they are closely related to sets of lines and do not carry
information about scale or size.

3.6 Local Regions

The major drawback of the point primitive concept is that once a detector
found an interesting point in an image, it did not provide information on
what region around the point would be suitable to serve for comparison
with point-features in other images. Typically regions of constant size and
orientation were then used for matching, allowing only for small baseline
matches without signi�cant changes in scale, orientation and other warps.

Another approach was taken in the last years by authors working on
robust or invariant region features. The term region feature is used here
because all of these detectors implicitly de�ne a local region, although the
way this is achieved di�ers from detector to detector, and the regions are not
always intuitively identi�able by a human.

In the 1990s Lindeberg proposed to exploit the scale-space represen-
tation(cf. to [Witkin, 1983]) of an image and to use a scale-normalized
Laplacian to obtain features with scale invariance [Lindeberg, 1993a,b, 1998].
These structures can be thought of having an intrinsic scale and can be re-
detected reliably under scale changes. This de�nes not only a position but
also a scale and consequently a local region.

Exploiting this, Lowe suggested in a method called scale invariant feature
transform (SIFT [Lowe, 1999, 2004]) that the di�erence of Gaussians (DoG)
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can be used for a close approximation to this scheme, which can e�ciently
be implemented using recursive �ltering with Gaussian kernels. Rejecting
keypoints that are only weakly localizable in the x-y-plane, the detector
produces stable features with a position and an intrinsic size (de�ning a local
region). Furthermore, Lowe proposed to exploit the image gradients of the
local region to de�ne an intrinsic orientation of the feature. Together with
the position, the scale and orientation parameters of the local features de�ne
a local coordinate system attached to the feature, which behaves covariantly
under similarity transforms. Using the detected parameters, the local image
region can then be warped into a normalized coordinate system, allowing for
matching images with signi�cant scale and rotation changes (additionally to
pure translation).

Upon the normalized regions, Lowe computed the SIFT descriptor[Lowe,
1999, 2004], which describes the content of the local region in a robust way
even in presence of intensity changes and small alignment errors. Together
with the detector, the descriptor is invariant against similarity transforms of
the image and a�ne brightness changes. The method degrades only slightly
when changes are approximately explainable with these transforms. Recently,
an even faster version of the SIFT principles, called SURF[Bay et al., 2008]
has been proposed. In the �eld of robust descriptors, working on the nor-
malized local region, a good overview is given in [Mikolajczyk and Schmid,
2005].

Some work into a di�erent direction exploited invariants of the local im-
age structure under di�erent transforms [Florack et al., 1994, Flusser and
Suk, 1993, Montesinos et al., 1998, Schmid and Mohr, 1997]. Here the goal
was not to detect parameters of the local region (like scale or orientation),
but rather to characterize the local image signal at a point in a way invariant
against some transformations, e.g. by exploiting invariants of moments and
derivatives. Van Gool et al. [1995] describe how such invariants against some
transformation can be derived. In this approach, the transformation's param-
eters are not determined and then compensated (as in the SIFT approach)
but the transformation's e�ects are rather canceled out in the formulation.

During the last 10 years several authors worked on automatically achiev-
ing full a�ne invariance. Lindeberg proposed to exploit local image shape
for smoothing structures in a�ne scale space[Lindeberg and Garding, 1997].
Similarly, Baumberg [2000] examined the local image structure encoded in
the second moment matrix to normalize the image regions around Harris
corners. This removed skew and anisotropic stretch distortions from the lo-
cal feature. In his descriptor a rotational grey-value invariant was applied,
removing the need to compute a local orientation. He also pointed out that
homographies can locally be explained well by a�ne transforms, allowing
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the approach to cope with locally planar structures seen from quite di�erent
viewpoints.

Tuytelaars et al. proposed the use of edge-based (EBR[Tuytelaars and
van Gool, 1999]) or intensity-based regions (IBR[Tuytelaars and van Gool,
2000]) to obtain features behaving covariantly under a�ne image transforms.
Mikolajczyk and Schmid suggested detectors based on extensions of the Har-
ris corner detector [Mikolajczyk and Schmid, 2001, 2002] and on the Hessian
of the image function [Mikolajczyk and Schmid, 2004b]. Matas et al. pro-
posed separated elementary cycles of the edge graph (SEC) [Matas et al.,
2001] and maximally stable extremal regions (MSER), an exploitation of a
watershed algorithm to compute regions that have signi�cantly di�erent in-
tensity than their surrounding [Matas et al., 2001, 2002, 2004]. Kadir et al.
worked on detectors based upon the statistics of the image and information
theory [Kadir and Brady, 2001, Kadir et al., 2004]. A comparison of a�ne
region detectors can be found in [Mikolajczyk et al., 2005]. Although these
a�ne region features carry more information than simple points, in most
estimation approaches they are geometrically handled as points.

To better exploit the information carried in such features, Chum et al.
[Chum et al., 2003] proposed that in each local feature coordinate system,
three simple points can be detected so that each a�ne feature correspondence
provides three point correspondences, which could be exploited in fundamen-
tal matrix estimation. This idea was recently also adopted by Perdoch et al.
[Perdoch et al., 2006] for another epipolar geometry problem. Riggi et al.
[Riggi et al., 2006] on the other hand did no longer detect points in the lo-
cal a�ne frame, but directly sampled the local a�ne frame into three close
points, which could then be used in traditional point-based fundamental ma-
trix estimators. In large scale image search and object retrieval [Jegou et al.,
2008, Philbin et al., 2007, Chum and Matas, 2008], corresponding features
are checked for geometrical consistency to re-rank the results. Here, Philbin
et al. [2007] assume that all feature correspondences on a 3D query object can
be explained with a single general 2D a�ne transform. They compare mod-
els with isotropic scale, axes-aligned scales and shear (but no 2D rotation)
but do not model global perspective e�ects. Jegou et al. [2008] down-weight
results where the features signi�cantly di�er in relative rotation or average
scale, which seems to be an e�cient heuristics in large-scale search.

Also in video sequences, where position, warp and appearance of local
regions change only gradually from frame to frame, feature tracking based
upon a�ne parameters has been proposed already in [Lucas and Kanade,
1981] and exploited for monitoring feature quality in [Shi and Tomasi, 1994].
An overview of the e�cient algorithms for tracking through video or image
alignment proposed since then is given by Baker and Matthews[Baker and
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Matthews, 2004]. In [Astrom et al., 1998] local homography optimization
was proposed for locally planar patches. A�ne tracking is used nowadays in
many applications, but the geometric information the a�ne warp provides
is disregarded or exploited only in extended Kalman-�ltering [Molton et al.,
2004, Davison et al., 2007] or iterative re�nement techniques. The latter has
been used with an a�ne camera model �rst [Rothganger et al., 2006] and has
recently been extended to a locally linearized projection matrix [Rothganger
et al., 2007] for 3D planar patch tracking.

3.7 Summary and Relation to this Thesis

To summarize, several authors proposed features repeatable under scale or
similarity transforms [Mikolajczyk and Schmid, 2001, Lindeberg, 1998, Lowe,
2004, Kadir and Brady, 2001, Bay et al., 2008] or even a�ne transforms
[Tuytelaars and van Gool, 1999, 2000, Matas et al., 2001, Mikolajczyk and
Schmid, 2002, 2004b, Matas et al., 2002, Kadir et al., 2004], which have a
local, covariantly transforming coordinate system attached to them, allowing
to normalize the local region for photometric matching. Also gradient-based
tracking methods provide an a�ne transform between local image regions
[Lucas and Kanade, 1981, Shi and Tomasi, 1994, Baker and Matthews, 2004].

However, in the literature so far, the geometric information in the a�ne
warp has mostly been neglected or used heuristically. It was only used as
a constraint in iterative optimization or sampled into a triplet of very close
point correspondences. Many point-based algorithms are not designed to
cope with in�nitesimally di�ering points and the question arises whether the
information cannot be represented in a more compact way than by sampling.
Therefore, in the next section a novel primitive for estimation will be derived,
which de�nes a whole new set of direct estimators and for which uncertainty
can be derived in order to allow maximum likelihood estimation.
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Chapter 4

Di�erential Constraints from

Local A�ne Frame

Correspondences

The problem of automatically obtaining correspondences between images is
complicated by the fact that parts of a scene can look signi�cantly di�erent
when viewpoint or illumination changes. To cope with this problem, the idea
of robust features appeared (compare [Tuytelaars and Mikolajczyk, 2008] for
a good survey), where each describes a local, potentially continuous region
of the scene. Besides the risk of introducing ambiguities due to the locality
of such features, the approach has two major advantages: First, since each
feature covers only a very small part of an image, there is a good chance that
many of such local regions can be found fully intact in another image, even
in presence of occlusion or other scene changes. Second, within a local region
global e�ects of smooth transformations, such as perspective e�ects and ra-
dial distortion, are hardly observable, i.e. �rst order Taylor representations
of distorting functions are good approximations to undistort local patches.
Similar ideas also apply to photometric changes of images.

As summarized in the previous chapter, many feature detectors evolved
that are able to �nd local regions suitable for the above approach, i.e. local
regions in which a�ne transformations are observable and which can reli-
ably be found also in other images (compare [Mikolajczyk et al., 2005]). In
the next sections, the way to obtain such correspondences is characterized
and, given a correspondence, a geometric model to exploit the information is
derived. This model applies also to a�ne template tracking through video,
and the tracking approach can thus also be exploited to re�ne feature corre-
spondences. Nevertheless, in the end a measured correspondence is always
a�icted with uncertainty so that a statistical framework is derived to allow
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Figure 4.1: Chessboard texture on two planes observed by an ideal pinhole
camera with a very wide �eld of view (left) and a �sh-eye camera (right).
In the left image the original (orthophoto) chessboard texture is related to
the perspective view via the two homographies across the two planes. Four
rectangular cutouts have been chosen and manually recti�ed using rotation,
shear and scale only (a�ne approximation of homography). Although no
projective unwarping has been done, only for the larger regions (e.g. 1 and
4) the a�ne approximation has a visible di�erence from a square. For in-
stance, in the cutout 1 the opposite borders of the black patch are visibly
not parallel. Such projective e�ects cannot be compensated because a�ne
transforms preserve parallelity of lines. However, they are only observable
in larger windows and locally the a�ne transform is a good approximation
even to non-linear warps. In the right image, the nonlinear mapping of the
�sh-eye camera has locally been compensated by a manually selected a�ne
transform in the same way.

for maximum-likelihood estimation and statistical testing for mismatches or
outliers. The novel primitive for estimation is �nally related to other estima-
tion primitives such as conics, which concludes this chapter.
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4.1 Robust Local Image Features

Progress in robust local features1 allows matching of images in which ap-
pearance of local regions undergoes approximately a�ne changes of bright-
ness and/or of shape, e.g. for automated panorama generation or scene re-
construction through wide-baseline matching. The idea is that interesting
features are detected (e.g. corners, blobs, ...) in each image and that the
surrounding region of each feature is normalized with respect to the local
image structure in this region, leading to about the same normalized regions
for correspondences in di�erent images. Features with equal or similar nor-
malized regions are tentative correspondences, which can be veri�ed using
a geometry/motion model (e.g. epipolar geometry check). A�ne normaliza-
tion of the regions is particularly interesting because an a�ne mapping is
a �rst order Taylor approximation to the true (possibly unknown) mapping
function. In �gure 4.1 a manual a�ne normalization can be seen.

4.1.1 Regions of Interest

As summarized in the previous section many region detectors have been pro-
posed for similarity [Mikolajczyk and Schmid, 2001, Lindeberg, 1998, Lowe,
2004, Kadir and Brady, 2001, Bay et al., 2008] or a�ne transforms [Tuyte-
laars and van Gool, 1999, 2000, Matas et al., 2001, Mikolajczyk and Schmid,
2002, 2004b, Matas et al., 2002, Kadir et al., 2004]. Exemplarily in �gure 4.2
the MSER[Matas et al., 2002] features are shown, and �gure 4.3 shows the
a�ne normalization. Each of these features can be described by a position
(fx, fy)

T in the image and its local shape and orientation, as will be described
in the following section.

4.1.2 Local A�ne Frame

The local a�ne frame (LAF, cf. also to [Obdrzalek and Matas, 2006]) is a
coordinate system attached to the feature, where each point in the feature
coordinate system with the center (fx, fy)

T can be described independently of
the scale, the orientation or the stretch of the feature. The parameters of the

1While robustness in the �eld of estimation usually means insensitivity against gross
errors (e.g. mis-matches in correspondence-based geometry estimation), in the �eld of
local image features robustness is rather used to distinguish from invariance (compare also
[Tuytelaars and Mikolajczyk, 2008]): If a feature is invariant under some transformation
or disturbance, the mathematical formulation directly models and accounts for this. If
a feature is only robust, this source of disturbance is usually not explicitly modeled.
However, if the disturbance is small then the feature is not a�ected too much from this.
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Figure 4.2: Two images with wide baseline, where the camera was addi-
tionally rolled by 180◦. In these images MSER[Matas et al., 2002] features
have been detected as indicated by the small ellipses. The ellipses represent
the mean and the second central moment of the pixels segmented by the
watershed algorithm.
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Figure 4.3: In each of the MSER features from �gure 4.2 the local gradients
have been exploited to obtain a main orientation as proposed by Lowe[Lowe,
2004]. Together with the elliptical shape this provides a full a�ne coordinate
system, the local a�ne frame. Two features are shown in their LAF coordi-
nate system (after optimization). As can be seen, this normalization results
in two almost identical local regions. This means that a concatenation of
the two transformations warps the local region of the �rst image onto the
local region of the second image. Mathematically, this transformation is the
linearization, or the �rst order Taylor approximation of the true homography.
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local a�ne frame transform covariantly when an a�ne transform is applied
to an image. For example the region size and shape may change: these
parameters are not invariant under a�ne transformations, but they behave
accordingly to the transformation, i.e. in a downsized image the region size
will also be reduced consistently. Since the a�ne parameters are always
determined based upon regions in the image, in the remainder the detectors
for such a�ne frames will be called a�ne region detectors, regardless of
whether they physically represent a region or a point (e.g. a corner).

A�ne covariant region detectors like Hessian or Harris a�ne directly
compute a local texture anisotropy, which de�nes the scale and the elliptic
shape of the feature while the MSER detector determines the a�ne shape
using the scatter of the detected pixels. EBR, IBR and Salient Regions also
have their own tailored solutions for obtaining the local shape.

The a�ne shape matrix Ashape ∈ R2×2 has already been used for the
overlap error evaluation in [Mikolajczyk and Schmid, 2004a]. Depending on
the type of detector used it is either the root of the second moment matrix,
i.e. the gradient distribution around the feature (e.g. Harris and Hessian
a�ne) or the root of the second central moment of the pixels belonging to
the local feature (e.g. MSER). It can be decomposed as

Ashape = A
T
RAscaleAR (4.1)

where Ascale ∈ R2×2 is a diagonal scale matrix holding the principal scales
and the rotation AR ∈ R2x2 de�nes the direction of scales. The determi-
nant of Ashape is proportional to the image area covered by the local feature.
Consequently, in the following det [Ashape] 6= 0 is assumed for all measured
features.

After the shape of the region is �xed, the orientation has to be de�ned,
which can be done by computing a main gradient orientation in the region de-
�ned by the above shape matrix as originally proposed by Lowe [Lowe, 2004].
The local a�ne frame is then rotated according to this main orientation by
Aorientation ∈ R2×2:

Aorientation =

(
cos [θ] sin [θ]
−sin [θ] cos [θ]

)
(4.2)

Therefore the overall transformation that warps between the feature and the
(feature-centered) image is:

A2×2 = A
T
RAscaleARAorientation =

(
a11 a12

a21 a22

)
(4.3)

The linear shape of the local a�ne frame can e�ciently be stored in a 2×2
matrix (similar to [Hartley and Zisserman, 2004, p.40]) and the factorization
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is easily obtained from the singular value decomposition(SVD, cf. to [Hartley
and Zisserman, 2004, p.585]) of the matrix :

A2×2 = USV
T = USU

T(UVT) (4.4)

Now, the position of the feature with respect to the image coordinate system
is also considered, allowing to directly transfer image coordinates into local
feature coordinates and vice versa. A homogeneous point in the image xI is
related to a point in the local a�ne frame xA through the 3× 3 matrix A:

xI = A xA =

 a11 a12 fx
a21 a22 fy
0 0 1

xA xA,xI ∈ P2 (4.5)

Since A2×2 must be invertible, A must also be invertible:

xA = A−1 xI (4.6)

In the following, the matrix A itself will be referred to as the local a�ne
frame (LAF) of the feature in the image.

4.1.3 Descriptors

Given the local a�ne frame of a feature, the local texture of the image can be
warped and the normalized patch (with respect to the LAF parameters) can
be constructed, similar to what Lowe [1999] proposed for the SIFT features.
The normalized patch will look the same for all images which are a�nely
transformed versions of the �rst image and will still look similar when the
local image warp is only approximately a�ne (see also �gure 4.3 for an ex-
ample). To obtain potential correspondences, a criterion is now required
that states whether two patches look similar or not, and this can be done by
computing a signature (also called a descriptor) upon the local region.

The simplest signature is a vector of grey values at �xed positions in the
local a�ne frame. Such vectors can then be compared by means of dissimi-
larity measures like SSD(see e.g. [Skoglund and Felsberg, 2006]) or SAD(as
used in [Skoglund and Felsberg, 2007]) or similarity measures like NCC(as
exploited in [Lewis, 1995]) or any other metric which can be applied to image
patches. However, since the parameters of the local a�ne frame are often
disturbed, authors proposed to use descriptors that tolerate small errors in
the parameters of the local a�ne frame and also some photometric distor-
tions of the region. A good overview of such descriptors has been given
by Mikolajczyk and Schmid [2005], where it was found that the SIFT[Lowe,
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2004] descriptor performs particularly well. This 128-dimensional vector rep-
resents gradient orientation histograms based on a soft-binning technique and
will be used in the remainder of this thesis, although the methods proposed
are not limited to a speci�c descriptor.

4.1.4 Matching Strategies

When seeking correspondences in a video sequence, they are usually spatially
close in subsequent frames. Therefore, in a feature-based approach, in each
frame of the video features can be extracted and compared to features in
a spatial neighborhood in the next frame. The size and shape of the spa-
tial neighborhood depends on the relative movement of the objects in the
scene and the camera. This technique is called image-space matching in the
following.

When images with a totally unknown relation have to be matched, image
space matching cannot make any assumptions on the size of the local neigh-
borhood and would require the comparison of every feature in one image
with every feature in another image. Particularly when multiple image are
involved, this is often too complex for fast applications.

However, corresponding features will have similar descriptor vectors, and
therefore the matching problem for a given feature can be posed as that of
�nding a cluster of similar descriptor vectors in the space of all possible de-
scriptors. This technique is called feature-space matching and is particularly
well-suited for problems where some o�ine processing time can be spent to
prepare data structures of learnt descriptors while online lookup of a descrip-
tor should run fast. However, for huge numbers of features feature-space
matching can already be e�cient for online two view matching problems.
Since 128 is a very high number of dimensions, the sparsely populated fea-
ture space has to be compressed in some way or at least e�ciently represented
to allow storage in memory [Beis and Lowe, 1997, Köser et al., 2006b]. In
the next section it is assumed that a correct correspondence has been ob-
tained using any of the above matching strategies to derive a more powerful
constraint than the traditional point-to-point correspondence.

4.2 The LAF Correspondence Constraint

4.2.1 Concatenation of Local A�ne Frames

In section 4.1.2 it has been shown how the image and the local a�ne frame are
related. Particularly equation (4.6) states how coordinates in an image can
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be expressed as coordinates in the local a�ne frame for some local feature.
Since in the following a second image and a second local a�ne frame will be
regarded, equation (4.6) is now repeated here with more precise indices for
the �rst image I1 and the local a�ne frame Ax,I1 of feature x in this image.

xA = A−1
x,I1

xI1 (4.7)

If a local feature y is now observed in another image I2, a local a�ne frame
for that feature can be established for that image. A point yI2 in the corre-
sponding region in the other image can also be transformed into its feature
coordinate system.

yA = A−1
y,I2

yI2 (4.8)

If the local region in the image I1 is an a�nely transformed version of the
local region of the other image I2 both normalized regions will look the same,
i.e. the same coordinates in both normalized regions

xA = yA (4.9)

will have the same intensity value (see e.g. �gure 4.3). Furthermore, this
correspondence together with equations (4.7) and (4.8) relate coordinates in
both original images via the concatenated transformations:

A−1
x,I1

xI1 = xA = yA = A−1
y,I2

yI2 (4.10)

xI1 = Ax,I1A
−1
y,I2

yI2 = AxyyI2 (4.11)

Here, Axy contains the transformation from image I2 to image I1 in a homo-
geneous matrix. This can also be viewed as a mapping from 2D Euclidean
image coordinates to 2D Euclidean image coordinates

xI1 = Axyy
I2 + dx Axy ∈ R2×2,dx ∈ R2 (4.12)

where Axy represents the linear part of the image to image warp and dx
the o�set. The matrix Axy captures local (anisotropic) stretch and rotation
between both images at the correspondence and is also the Jacobian of the
transformation. This relation has been exploited in matching or tracking for
quite some time (at least implicitly), but in the next section the geometric
constraints it imposes will be derived as originally proposed in [Köser et al.,
2008].
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Figure 4.4: The concatenation of two corresponding LAFs yields a local
linearization of the homography between the two planes on which the features
lie.

4.2.2 Warp Constraints

Whenever region-based features are used to �nd correspondences between
images, the base hypothesis is that (a transformed version of) the region
can be found in both images. The implicit assumption when applying a�ne
features is that the texture warp W : R2 → R2 between the two views can
locally be approximated reasonably well by the �rst order Taylor series (an
a�ne mapping), i.e. the warp is locally analytic and close to linear (see also
�gure 4.4): The centers x0 and y0 of the feature correspondence ful�ll the
classical point-correspondence property:

y0 = W [x0] x0 ∈ R2,y0 ∈ R2 (4.13)

However, since W is required to be analytic and close to linear, the region
around the point x0 in image one maps to a region around W [x0] in the other
image according to the Taylor-series of W:

y = W [x] = W [x0] +
∂W

∂x

∣∣∣∣
x0

[x− x0] + ε [x− x0] (4.14)

where ε represents all higher order terms and vanishes if W is locally an a�ne
transform. A more detailed presentation of the Taylor series and an upper
bound on the error can be found in appendix A.1. In practical situations,
ε can be considered zero if W is well-linearizable (such as homographies far
from the (pre-)image of the line at in�nity) in the region upon which the
LAF correspondence is computed.
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For an a�ne feature correspondence it is known that coordinates are
related by equation (4.11). Under the assumption that ε(x − x0) = 0 for
x0 ≈ x it follows that

∂W

∂x

∣∣∣∣
x0

= Axy (4.15)

This is a matrix equation, which must hold for all four entries and conse-
quently imposes additional constraints on the function W. E.g. if the desired
transformation W is a homography, equation (4.15) poses four additional con-
straints on the parameters of W, i.e. each a�ne correspondence now con-
tributes a total of six constraints on the components of the homography (two
from the center correspondence as usual and another four from the local
region deformation). Usually it is possible to apply a virtual change of coor-
dinate systems, so that the correspondence is in the origin of the new system.
Then, e.g. in case of a homography, the constraints of equation (4.15) often
even become very simple and linear, depending on the parameterization.

4.2.3 Physically Motivated Interpretation

The local a�ne frame can also be viewed as two vectors attached to some
point of the image signal spanning a local coordinate system. Under a
smooth, analytic transformation W of the image signal I into a transformed
version T

I [x] = T [W [x]] (4.16)

these two basis vectors e1 and e2 represent a physical signal property at
that point, which behaves covariantly with this transform. For instance, the
local gradient of the image behaves covariantly with such a transformation
of the image. Therefore, as an illustrating example, let e1 be the local image
gradient. As can be seen from the chain rule, when going from I to T using
the warp W, the gradient is multiplied by the Jacobian of W:

∂I [x]

∂x
=
∂W

∂x

∂T [W [x]]

∂W [x]
(4.17)

which de�nes the new basis vector in the other image. If I is a multi-channel
(e.g. color) image, e2 can be imagined as the gradient of the second channel.
This gradient changes covariantly with the image transform, too. If e1 and e2

are linearly independent, they form a basis of a local a�ne coordinate system.
The basis vectors of the transformed local a�ne frame can be obtained by

e′1 =
∂W

∂x
e1 e′2 =

∂W

∂x
e2 (4.18)
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These two vectors now de�ne the rows of the 2×2 matrix A2×2 from equation
(4.3), the basis of the local a�ne frame. Therefore the origin of the local a�ne
frame maps with the warp W while the two basis vectors (or the a�ne matrix)
map with the Jacobian ∂W/∂x of W. That means that the whole local a�ne
frame maps into the other image with the �rst order Taylor representation
WTaylor of the function W:

Ax =

(
∂W
∂x
∣∣
x0

W [x0]− x0

1

)
Ay = WTaylorAy (4.19)

The homogeneous 3×3 matrix WTaylor can be constructed for any analytic
warp W and will be used to express the local linearization in the remainder
of this thesis. It states a fundamental connection between local a�ne frames
in di�erent images.

Since the Harris-a�ne detector [Mikolajczyk and Schmid, 2002] is based
upon the local gradients in a region (the second moment matrix), it pro-
vides a close approximation to the above requirements, if the region is small.
Analogous considerations apply to the other detectors that behave covari-
antly with an a�ne transformation of the image: The regions upon which
they are computed must be so small that the warp's derivative in equation
(4.18) does not change (signi�cantly) within the region. Not surprisingly, this
is the same requirement as it was for establishing correspondences between
these features: to allow for extraction of a good (constant) feature descriptor
based upon region normalization or invariants, also no signi�cant perspec-
tive (non-linear) e�ects must be visible in the patch. Since virtually all of
these detectors have been designed to allow wide-baseline matching based
on locally planar 3D regions, the above assumption is not a big restriction
but rather a description of what has already been exploited in matching for
years.

4.2.4 Triangle Decomposition

While the previous section gave another view on how the a�ne feature corre-
spondence imposes constraints and under which assumptions, in this section
it is shown how an a�ne feature correspondence can be approximated by
three, spatially very close, point correspondences.

Equation (4.15) is about the derivatives of the transformation W at the
feature position. It states that the a�ne transformation (as the �rst order
Taylor approximation) is tangent to the transformation at the feature po-
sition. This can be a non-linear constraint for a particular transformation
W. Each type of transformation requires an inspection of the structure of
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Figure 4.5: The feature of the previous �gure has been cut out of both images
to visualize the triangle decomposition. Each feature can be sampled into
three points, which form a triangle and which each correspond to a point
sampled from the other feature. The distance of the points to the center
should be small enough such that the sampling does not dominate the actual
transformation e�ects. It must however be large enough so that using the
close points in the algorithm does not lead to numerical di�culties such as
cancellation.
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the derivative and possibly a tailored solution. However, there is also a nu-
meric way to automatically convert these constraints into more common and
well-understood point correspondences (similar to the �hallucinating points�
concept [Szeliski and Torr, 1998]), where the feature center and its two basis
vectors are represented by a triplet of points. This sampling will be called
the triangle transform in the following and is visualized in �gure 4.5.

Equation (4.15) states that the (typically measured) relative magni�ca-
tion, rotation, shear, etc. between the features in the two images equals the
derivative of the sought transformation. In principle, the �rst column of the
derivative is proportional to the step taken in image 1, when a small step is
taken in x-direction in image 2. The second column de�nes the step, when
a small step is taken in y-direction in image 2. When relaxing the in�nites-
imally small derivative in the left hand part of equation by a �nite step,
the di�erential constraint of equation (4.15) can be replaced by simple point
correspondences. The �nite di�erences are easily obtained from the feature's
scale and shape as explained next, providing a straight-forward and direct
approximation of the LAF correspondence by three point correspondences.

Each a�ne feature can be represented by a triangle, whose size and shape
can automatically be constructed from the a�ne region. The increased infor-
mation content of these features has already been used by Chum et al. [Chum
et al., 2003] and the �nite sampling has been proposed by Riggi[Riggi et al.,
2006]. The decomposition can be understood from the de�ning equation of
the a�ne matrix: Three correspondences (xA,xI) de�ne the a�ne matrix,
since each �xes two degrees of freedom. For simplicity, the three points

xAr = (1, 0)T

xAg = (cos

[
2

3
π

]
, sin

[
2

3
π

]
)T

xAb = (cos

[
4

3
π

]
, sin

[
4

3
π

]
)T

are chosen, which divide the unit circle into three 120◦ segments, and there
are many other possibilities. Care must however be taken that the three
sampled points are not on a line, which is automatically guaranteed in the
chosen method. Their coordinates in the image are computed, which lie all
at the contour line of a feature ellipse, for which the a�ne approximation
is assumed to be correct. The image coordinates can simply be computed
from equation (4.5), yielding a triangle (from three sample points). A corre-
sponding feature in the other image is decomposed in the same way, which
provides a triplet of correspondences now, i.e. the corresponding triangle cor-
ners. One might as well have chosen four or more points, but this generates
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only redundant data with no extra information. It is now possible to use the
information of a�ne feature correspondences in the traditional point based
geometry estimation algorithms such as direct linear transformation (DLT,
cf. to [Hartley and Zisserman, 2004]). In addition to that, the triangle de-
composition allows for natural integration into overdetermined systems, since
residuals on point coordinates are much easier to understand, to weight, and
to adjust than residuals of higher order polynomials, which do not instantly
provide a geometrical real-world interpretation of what is being minimized.
However, the three points all stem from a local region, which often leads
to numerical di�culties such as cancellation (e.g. due to small di�erences of
large numbers, cf. to [Press et al., 1992]) because point-based algorithms are
often designed to work with well-distributed points.

4.2.5 Re�nement and Upgrade from Simpler Features

The considerations so far apply to a�ne features. However, if matches result
from similarity covariant region detectors (e.g. DoG as in [Lowe, 2004]) or
even weaker features, the proposed method can also be applied. The main
insight is that if a correct match has been established, the local regions
are often already approximately aligned. In that case the local a�ne frame
de�nition (equation (4.11)) can as well be applied to such features, resulting
in a special a�ne transform.

However, to further improve the estimate (even for already a�ne fea-
tures) it is possible to apply a gradient-based optimization of the correspon-
dence using the Lucas-Kanade approach [Lucas and Kanade, 1981, Baker
and Matthews, 2004]. This result is usually a much more precise region cor-
respondence, which again provides a much more precise estimate of the local
derivative of the warp. Such an optimization is inspected in the next section.

4.3 Alignment of Local A�ne Frame Correspon-

dences in Scale Space

Once a rough guess for the LAF correspondence is available, the grey val-
ues around the correspondence can be exploited to optimize it. Under the
assumption that the Jacobian of the texture transform is constant within a
certain surrounding of the correspondence, a local a�ne transform between
the two features can directly be estimated using gradient-based estimation.
The smaller the window for aligning the local regions is, the more likely it be-
comes that an a�ne transform between the images is su�cient to explain the
local warp. Even though a�ne features may lie on planes that show strong
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perspective in an image, in a local region the Jacobian is almost constant
and this is the reason why the a�ne features are so successful. It is a good
idea to parameterize the a�ne transform in terms of the Taylor expansion
(with the warp center at the correspondence center), because in this case the
warp and displacement parameters are less correlated than when the a�ne
transform is parameterized using global image coordinates.

Sometimes however, the correspondence may lie in a region, where the
Jacobian is not constant, so that averaging the a�ne transform across the
region will not produce a good estimate of the Jacobian at the center. This
can happen particularly when locally there is not much image structure, such
that the region for re�nement must be chosen quite large. In this case the
next higher term from the Taylor expansion can be used for estimation or
any other parameterization directly containing the parameters of the LAF
correspondence. Since the linearization should still explain the warp to a
large extent, the extra parameters can be initialized such that they do not
change the warp (e.g. zero for the second derivatives). If the system ma-
trix including the second derivatives has full rank, all the parameters can
be estimated. Typically, the uncertainty for the higher order derivatives is
quite high because they need a larger support to be measured. However,
they are only exploited to obtain the correct Jacobian and can be neglected
afterwards. If on the other hand the system matrix does not have full rank
because the second derivatives cannot be estimated from the local data, they
can safely be left out and only the �rst derivatives are estimated in that case.

Since typically the orientation and scale prediction is not very precise, care
must be taken when using grey value linearization as inherent in gradient-
based image registration. If gradient-based image alignment is directly ap-
plied to the full-resolution images, e.g. based upon a�ne warps, one notices
that some pixels of a patch can provide contradictory information. They dis-
turb the optimization because they are outside the valid linear environment
of the true correspondence (compare �gure 4.6) and such outliers have to be
avoided. For instance, if the initial parameters have a rotational error of 10◦

(which is the orientation histogram quantization proposed in SIFT[Lowe,
2004]), this results in a position error of three pixels for the corners of a
square patch with half window size 12. In presence of �ne detail, this vio-
lates the grey value linearization assumption. Typically, image pyramids are
used in this case or heuristic smoothing is applied, but if the resolution is
reduced, one may run into a high-dimensional version of the aperture prob-
lem, where not enough data exists to estimate the parameters: the feature
has a relatively good localization at its intrinsic scale in scale-space (cf. to
[Lindeberg, 1994]), but does not necessarily provide much structure at signif-
icantly coarser levels. Therefore, one goal of the method proposed in [Köser
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Figure 4.6: Given rotational, similarity, or a�ne parameter uncertainty, the
2D pixel positions within a warped patch are unequally certain (left image).
The ellipses indicate the 2D position uncertainties in a patch induced by
signi�cant rotational and minor scale uncertainty. This can be viewed as the
footprint of the parameter uncertainty. Outer regions (far from the warp
center) are typically more uncertain and at positions near a patch border the
assumption of locally linear intensities in gradient based alignment quickly
gets violated with such uncertainties. The linearity assumption can be seen
in the 1D intensity pro�le of the right image, where the intensity near xT is
approximated by the tangent (dotted line). For a small displacement, e.g. x1

I ,
the linearity is quite correct, but for a larger, e.g. x2

I , the linear extrapolation
is far away from the real data.
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Figure 4.7: Two rough feature matches, di�cult to re�ne for standard align-
ment. The left part of each pair shows an a�nely normalized feature from
the �rst image and the right part (with a black frame) shows the normalized
feature from the other image. Since this is the normalized representation (in
LAF coordinates), both patches should be identical. They di�er however, and
the main error is due to wrong 2D orientation. The missing a�ne transform
that makes both patches look the same has to be found by gradient-based
optimization. To increase the basin of convergence, traditionally pyramids
have been used, while in this thesis it is proposed to use an approach based
on known parameter uncertainty (e.g. for a rotation angle).

and Koch, 2008b] and summarized here, is to use as much of the data as
possible and only �lter out disturbing information. Also, when optimizing
parameterized warps based on multiple parameters, some may allow for a
better prediction than others and some may have a stronger in�uence on the
convex environment and validity of the local linearization. Finally, not all
of the pixels in a patch have to be sensitive to an incorrect start value in
the same way (compare center and border pixels in �gure 4.6). This sec-
tion addresses all these issues and incorporates uncertainty in a uni�ed way,
thereby embedding the classical image pyramid for displacement estimation.
Consequently, the proposed approach will not improve convergence in such
simple displacement scenarios but its goal is to automatically exploit a het-
erogeneous structure of more complex warps better than constant isotropic
smoothing. A di�cult setting when re�ning features can be seen in �gure
4.7.

The next section relates the contribution to previous work before section
4.3.2 presents the gradient-based alignment problem and shows how param-
eter uncertainty can be incorporated for a�ne region alignment.

4.3.1 Related Work on Gradient-based Alignment

One of the �rst publications on gradient based image alignment is the work
by Lucas and Kanade [1981]. In a stereo setting they stated that under the
Image Brightness Constancy Assumption the correspondence problem can
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be formulated as that of minimizing the grey value di�erence between corre-
sponding points using Newton's method, provided the prediction is close to
the true value. They also state that smoothing the image can increase the
convergence radius. Since then, a vast quantity of articles has been published
on extensions, improvements, accelerations and applications of this topic,
which are referred to as Lucas-Kanade-methods in the remainder. The in-
terested reader is referred to the work of Baker and Matthews [2004], which
provides an excellent overview and comparison. An approach di�erent from
the low-parametric global model is often taken in optic �ow measurement
[Lefebure and Cohen, 2001], where usually a 2D displacement is estimated
for each pixel leading to a huge number of parameters, which are only locally
important. Additional regularization terms are applied to overcome the lo-
cal aperture problem. In this work, the focus is on the case of estimating
the parameters of one model warp typically with high redundancy (a large
number of intensity measurements but few global warp parameters), where
the in�uence of the uncertainty of the global parameters is inspected.

At least since the work of Tomasi and Kanade [1991], alignment and
tracking has been performed on image pyramids in coarse-to-�ne strategies,
although this was handled rather as an implementation detail. For exam-
ple, [Bergen et al., 1992] mentions that parameters are propagated from one
pyramid level to the next. Christmas [1997] investigated the relation between
smoothing and optical �ow estimation in more detail, however he provided
a specialized �lter analysis for pure displacement only. Later, Molton et al.
[2003] examined parametric image warps in a probability-theoretic frame-
work. They were focused on formalizing and characterizing all sources of
noise and to incorporate priors on the warp parameters. Although they al-
ready give a good intuition that �smoothing should be done over a range
similar to the expected change of pixel position� they do not conclude that
di�erent pixels in a patch could be subject to di�erent amounts of smoothing
or that this smoothing could be anisotropic.

Uncertainty was also handled in other works [Steele and Jaynes, 2005,
Dorini and Goldenstein, 2006], however, not incorporated into the minimiza-
tion but rather viewed as an outcome. So far nobody considered the in�u-
ence of parameter uncertainty within the grey value di�erence minimization.
Therefore, in contrast to previous work it is proposed to propagate parame-
ter uncertainty to pixel position uncertainty, which helps in selecting a good
�lter scheme. Then an implementation is given exploiting the image's scale
space to obtain local convexity with high probability.
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4.3.2 Parametric Image Alignment with Uncertainty

The image brightness constancy assumption states that corresponding points
in two images have the same grey value, when the images are related by some
warp function W. According to Baker and Matthews [2004] the �rst image is
referred to as the template T and the second as the image I, where the warp
depends on some parameters p to relate coordinates between T and I.

xI = W [xT ,p] (4.20)

The intensity in the template is represented by the function T and in the
image by I, such that the image brightness constancy assumption states that
for the true p the intensities in both images are the same:

I [W [x,p]] = T [x] (4.21)

If a parameter prediction p̃ is given that is su�ciently close to the true value,
one may use Newton's method to �nd the parameters p̂ that minimize the
squared sum of intensity di�erences at positions xT from a patch. The term
patch is used here for intuition, but for smooth warps such as a�ne trans-
forms, xT may be from a set P of sample points in an image. For example, for
a�ne re�nement of robust image features, a �xed grid attached to the local
feature is used, such that the absolute number of samples does not depend
on the size of the feature. To obtain an in�nite homography for a purely
rotated camera, one may select a number of samples uniformly distributed
across the image. Although the contribution is not restricted to a particular
alignment method, the inverse compositional approach (according to Baker
and Matthews [Baker and Matthews, 2004]) is used here for demonstration.
They assume that the warps W form a group with respect to the parameter
p, so that

∀pforward ∃pbackward : W [x,pforward]−1 = W [x,pbackward] ∀x (4.22)

this way allowing to avoid explicit usage of inverses. Given a prediction p̃,
the method obtains an inverse compositional update ∆p̂ in each iteration
step

∆p̂ = argmin∆p
∑
xT∈P

(T [W [x,∆p]]− I [W [x, p̃]])2 (4.23)

which is (inversely) composed into p̃ for the next iteration. The equation
system is based solely upon the gradients in T to estimate the missing trans-
formation, which is assumed to be close to the identity transform. If p̃ is
very close to the true value, this means that ∆p is nearly zero, the prediction
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is in the convex surrounding of the minimum of the error function and the
above sum can be linearized

∑
xT∈P

T [W [xT ,0]] + ∇T |
xT

∂W

∂p

∣∣∣∣
x=xT ,p=0

∆p− I [W [xT , p̃]]

2

(4.24)

which (assuming W [x,0] = x) leads to the solution

∆p = H
−1
∑
xT∈P

(
∇T ∂W

∂p

)T

(I [W [xT , p̃]]− T [xT ]) , (4.25)

where

H =
∑
xT∈P

(
∇T ∂W

∂p

)T(
∇T ∂W

∂p

)
(4.26)

Baker and Matthews [2004] argued that the main advantage of this formula-
tion is that most parts on the above equation can be precomputed as they do
not depend on the image intensity I. In this thesis, the approach is however
chosen just as one example of alignment and the proposed technique can as
well be applied to other formulations. All Lucas-Kanade methods linearize
the local intensity signal, and in the following paragraphs the prerequisites
for this linearization will be inspected.

The term in (4.24) is only a valid approximation of the term in (4.23) as
long as p̃ is quite correct. It states that near the position x the template has
the grey value T [x] +∇T ∂W

∂p , which is only valid in a very small neighbor-
hood. E.g. if p parameterizes translation and p̃ is 10 pixels away from the
true optimum, in presence of �ne detail there may be multiple local extrema
in between, which are not represented by the linear approximation.

Incorporating Uncertainty

In many previous tracking applications the images were either blurred with
some prede�ned constant Gaussian kernel or a pyramid of a certain size was
used to increase the basin of convergence. The actual amount of blurring
to allow convergence (or the pyramid size) is then a system parameter, ei-
ther empirically set [Bleser et al., 2006] or left to choose for an expert user
[Zinÿer et al., 2004]. If the parameters to be estimated are di�erent from 2D
displacement, this can be rather unintuitive.

While the idea is kept, that the image brightness constancy assumption
is also valid at coarser scales, an appropriate scale is now computed auto-
matically on a per-sample basis: It is assumed that the uncertainty of the
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parameter vector is unimodal and characterized well by the �rst two mo-
ments of its distribution2, mean p̃ and covariance Σp̃p̃. Since the normal
distribution has the maximum entropy of all distributions for a given mean
and covariance, p is assumed being normal-distributed in the following. How-
ever, qualitatively the derivation also applies to the uniform distribution or
other unimodal distributions. Now, let the warp W map coordinates of T
to I. Next, it is investigated how much the coordinates change, when the
parameters p change. Under the assumption that W is locally approximated
well by its �rst order Taylor approximation (compare section A.1) linear error
propagation yields:

ΣxIxI
≈ ∂W

∂p
Σp̃p̃

∂W

∂p

T

(4.27)

If W is actually linear, then xI is normally distributed with covariance ΣxIxI
.

Now the iso-density curve at 2σ is chosen that comprises nearly 90% of prob-
ability inside. The enclosed area is called the target region. In the following
it is assumed that almost always the true correspondence x̌I is somewhere in
the target region and that therefore linear intensity is required within this
region. The shape and the size depend on the projection of the parameter
uncertainty Σp̃p̃ into the image. First the simple case is considered that
ΣxIxI

has two equal eigenvalues. This means that xI 's distribution is an
isotropic Gaussian with circular iso-density curves and that a point xT is
mapped to a disc around xI , whose radius l computes as

l = 2
√

0.5 trace [ΣxIxI
] (4.28)

Then, an appropriate scale in Gaussian scale space (cf. to [Witkin, 1983,
Lindeberg, 1994]) must be selected such that structures of smaller size are
suppressed to a large extent and the region can be considered approximately
linear. This can be achieved by convolution of the image with an isotropic
Gaussian having standard deviation l. The grey value is then computed at
this scale.

If on the other hand ΣxIxI
has two di�erent eigenvalues, this means that

xI 's position is more uncertain in some direction. In this case, imagine that
the image size is normalized, so that in the transformed image the uncer-
tainty becomes isotropic again. Then the method of above can be applied.
These operations can e�ciently be combined by smoothing the image with
a Gaussian �lter with covariance 4ΣxIxI

and resampling. However, in both

2When prior knowledge about the parameter distribution is available, it may also be
of advantage to incorporate this in terms of priors in Bayesian estimation as proposed in
[Molton et al., 2003]. To avoid mixing up di�erent e�ects, in this contribution the focus
is on the intensity-related aspects when parameter uncertainty is available.
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the isotropic and the anisotropic case the desired result is a single grey value
only (not a whole �ltered image), so basically the image convolution can be
reduced to a single weighted sum of intensities in the target region.

In the same way, also the region in the template has to be computed,
where an image sample at xI is backward-mapped given the parameter pre-
diction and its distribution. Requiring the warp to be invertible is no restric-
tion, since inverse compositional alignment assumes the warp to be invertible
anyway.

ΣxTxT
≈ ∂ (W (xI, ·))−1 [p]

∂p
Σp̃p̃

∂ (W (xI, ·))−1 [p]

∂p

T

(4.29)

This represents the region around xT where the warp prediction maps an
image position xI into the template. Since linearity is desired within this
region, one can proceed in the same way as with the image. Now, also the
gradient has to be calculated at the obtained scale.

To summarize, it is proposed that each grey value is obtained using an
individual level of smoothing such that it is linear within the predicted pa-
rameter uncertainty. Since each pixel can be chosen from the best resolution
available, it is less likely that one runs into the aperture problem, which of-
ten happens when the whole patch is lifted to a very coarse level, because
more information than necessary has been suppressed. In case the warp un-
certainty leads to an anisotropic position distribution anisotropic smoothing
should be applied at this position, e.g. for small purely rotational uncertainty
smoothing is only required tangential to the warp. The scale and the shape
of the smoothing will in general vary from pixel to pixel.

In early works (e.g. [Tomasi and Kanade, 1991]), where only 1D or 2D
displacement was estimated, isotropic image smoothing or the use of image
pyramids was suggested. This embeds perfectly into the proposed framework
because in the case of pure displacement estimation, isotropic 2D parame-
ter uncertainty leads to a constant and isotropic pixel position uncertainty
(ΣxIxI

= Σpp) for all positions in the patch. This results from the fact that
the Jacobian of the warp with respect to the parameters (the displacement)
does not depend on the pixel position. Therefore, in the novel method all
intensities would be picked from the same level in scale space or the same
pyramid level, which is exactly what was proposed in earlier works. In the
case of more complicated warps however, the more di�erentiated scheme pre-
sented above is the consequent generalization.
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Alignment Algorithm with Uncertainty

Select set P of measurement positions in template and repeat until all
positions are taken from the best resolution:

1. For each xT ∈ P propagate parameter uncertainty Σpp to position
uncertainty ΣxTxT

2. Obtain template grey value and gradient (an)isotropically from tem-
plate pyramid according to ΣxTxT

3. Construct Hessian and Steepest Descent Images (same as in [Baker
and Matthews, 2004])

4. Repeat until no signi�cant improvement:

(a) For each xT ∈ P obtain image coordinates xI using p̃

(b) propagate parameter uncertainty Σpp to position uncertainty
ΣxIxI

(c) obtain (an)isotropic grey values from image pyramid according
to ΣxIxI

(d) Compute residuals, solve for ∆p and compose ∆p with p̃

5. Update covariance Σpp

6. If parameter update or covariance is su�cient break, otherwise go
to 1

Figure 4.8: Overview of alignment with uncertainty
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Algorithm and Implementation

Now some details of the implementation are given (see �gure 4.8 for an
overview) and additionally, a second, more e�cient, approximation for the
considerations presented in section 4.3.2. As stated before, an initial estimate
of the uncertainty for the parameter guess p̃ is required. For robust feature
re�nement such uncertainty estimates can be obtained e.g. from an empirical
feature detector evaluation [Mikolajczyk et al., 2005] or from noise models
[Steele and Jaynes, 2005]. As an approximation for the image's scale space,
the Gauss pyramid with width and height reduced by a factor of two per
level (as e.g. used in [Lowe, 2004]) can be used. Between the pixels of a
level and between the levels, linear interpolation is applied, which is also
known as trilinear �ltering in computer graphics (see [Williams, 1983]). If
anisotropic smoothing is required, �rst the smaller principal vector of the
pixel covariance is determined and trilinear image values are extracted from
the scale space. These values are then smoothed in direction of the larger
principal vector. This exploits the pyramid and avoids anisotropic �ltering
with huge masks at full image resolution. This method is called anisotropic
in the following.

Since often the parameter distribution is not known exactly but only its
approximate shape, since additionally the linearization of the warp is some-
times only valid in a small range and since anisotropic smoothing is expensive,
it is proposed even in case of an anisotropic covariance to simply pick the
grey value directly from scale space according to equation (4.28): as the trace
is the sum of the eigenvalues and the eigenvalues of a covariance matrix are
the variances in principal directions, the trace can be seen as a rough up-
per bound of the maximum variance. This approximation is called the scale
method in the following. In case of isotropic pixel position uncertainty the
anisotropic and the scale approach are the same.

Having obtained the gradients and the image intensities as described
above, the inverse compositional alignment is performed. In the minimum
of the error function, the parameter covariance is estimated from the Hes-
sian and the reference variance. This new covariance is then used in the
next iteration, for which the template and the image is constructed again as
described above (compare �gure 4.9). Convergence of the system can be de-
clared if all measurements (or some control measurements) are picked from
the highest resolution. In this case the algorithm behaves as the original
inverse compositional alignment.
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Figure 4.9: A patch containing hand-written text is aligned using the scale
method. The initial a�ne warp to be estimated between the image in the
�rst and the template in the second column contains a 15◦ rotation, a scale
of 10% and a position o�set of 1 pixel. The gradients used for estimation
and the scale, where they have been taken from, can be seen in the right
two columns (darker pixels represent lower values). Since initially the un-
certainty is set appropriately for the missing transformation, particularly at
the outer patch parts samples are picked from coarse resolutions (�rst row).
With nearly compensated scale and rotation and improved uncertainty, �ner
details can be used in the second row. When all samples are taken from the
highest resolution (third row) the algorithm behaves like the original inverse
compositional alignment. Please note that the graphics do not show warped
versions of continuous images, but rather sets of loose intensity (or gradient)
measurements at some discrete positions. Instead of showing the individual
intensity values in an equation system, here they are arranged in a 2D array
for visualization. Because of sparse sampling these arrays are not suitable for
reconstruction of the full image signal but targeted for parameter estimation
only.



4.3. ALIGNMENT IN SCALE SPACE 59

Figure 4.10: The left image shows a sum of a horizontal and a vertical sine-
pattern. Such images have been created for di�erent frequencies and each
was rotated around its center as indicated by the arrows. In the center plot,
the maximum angle for which gradient-based Euclidean parameter estima-
tion converged for a 21×21 center patch is depicted in dependence of the
sine-frequency. Scale and anisotropic are the new methods described in the
previous sections, which are compared with a traditional pyramid approach.
Particularly when very �ne image structures close to the Nyquist frequency
are present, both novel approaches outperform the rigid pyramid with re-
spect to the convergence radius. The template values of the center patch
computed for rotational uncertainties of 0, 4, 9 and 16 degrees with the
anisotropic method can be seen in the right image.

4.3.3 Evaluation of the Optimization

In order to demonstrate the principle of the novel approach, �rst a very
simple example is shown, where a 512×512 (�oating point valued) template
with intensity T [x, y] = sin [λ x] + sin [λ y] as depicted in �gure 4.10 is
used. This image is rotated around its center and afterwards Gaussian noise
(σI = 2% of the sine amplitude) is added to each pixel. On this data a 3-
parametric Euclidean warp (α, dx, dy) is estimated using the anisotropic and
the scale method and a traditional pyramid-based approach for comparison,
where the estimation is �rst performed on pyramid level three and then
the results are down-propagated and re�ned on the next better resolution.
21×21 samples are used in a patch centered in the image and 0◦ is always
provided as a rotation prediction, but with di�erent uncertainties. It can
be seen that with increasing sine frequency the pyramid approach converges
only for smaller and smaller angles, while the anisotropic �ltering almost
always catches rotations of up to 45◦. The scale approach has slightly worse
convergence than the anisotropic but still better than the pyramid approach.

Next, the images of �gure 4.11 have been chosen, where SIFT features
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Figure 4.11: The images bricks and declaration have been rotated and the
fraction of diverged alignments at SIFT-feature positions in the �rst im-
age have been counted (right of each image). The starting position in the
second image was correct, but the rotation was set to zero to obtain a conver-
gence radius estimate for the rotation parameter. For the traditional pyramid
method, the best pyramid layer is displayed, which provides still worse re-
sults than automatic individual smoothing. Note that these images contain
very �ne structures (see detail magni�cations) which are almost �ltered out
in the classical coarse-to-�ne strategy. In the novel approaches, they are used
if possible (see also �gure 4.9).
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Figure 4.12: The two left images a and b (1536×2048, ≈ 40◦ �eld of view)
have been taken with a digital camera, which purely rotated. An estimate
of the rotation was given within 1◦ degree accuracy, from which an in�nite
homography could be predicted. Given prediction and uncertainty the ho-
mography has been optimized and the resulting parameters have been used
to stitch the images (c). The optimization has been run upon 20×20 samples
only, distributed uniformly across the three mega pixel image. No heuristic
smoothing or manual selection of a �good� pyramid level was applied. Note
that this is an extremely challenging situation because of the frequency con-
tent. Remaining errors may be due to lens distortion, camera movement and
changed illumination.

were detected followed by a rotation of the images. Around each feature
21×21 samples have been used in a square window 10 times the detection
σ (cf. to [Lowe, 2004]). Then Euclidean parameters have been estimated
with correct position prediction but with no rotation prediction. When the
rotation was estimated worse than 0.05 rad (≈ 2.9◦), a failure has been
recorded. The graphs show that for very small rotation errors all approaches
converged, but for larger rotational errors the novel approaches diverge less
frequently than the traditional pyramid approach, presumably because they
are better at exploiting �ne structures.

In the next experiment the automatic scale approach is demonstrated
based on an extremely sparse set of samples. Gradient based homography
estimation is applied for a real pair of photos containing high-frequency pat-
terns of skyscrapers. No heuristic smoothing or some good pyramid level had
to be selected. Instead, a prediction for the homography parameters was ap-
proximated by propagating the rotational uncertainty of 1◦ (see �gure (4.12)
for details). For such warps with higher numbers of parameters, heuristic
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Figure 4.13: The matched features of �gure 4.2 have been re�ned using the
anisotropic approach based on an empiric covariance estimate. The top row
shows all potential correspondences including mismatches. In each triple, the
left image is before re�nement, as the feature detector found it, the center is
the feature from the other image and the right is after re�nement. It can be
seen that in most cases the right and the center image look very similar, even
when the optimization started far away. Four correspondences are enlarged
at the bottom.

smoothing becomes really involved, while the novel framework solves this
problem automatically as long as the uncertainty is in the correct range.

Finally, some a�ne features have been detected in two images as displayed
in �gure 4.2, automatically matched, and the resulting correspondences have
been further optimized as shown in �gure 4.13. It can be seen that the
optimization works for starting values quite far from the correct solution.

4.3.4 Summary on Gradient-based Optimization

Image pyramids have been used in gradient-based displacement estimation
for a long time to increase the convergence radius. When more complex
parametric image transformations were considered, the pyramid concept has
simply been adopted in the literature so far or the images under inspection
had to be provided smooth enough for convergence. In this section a frame-
work has been presented, which incorporates parameter uncertainty into the
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registration process working in scale space. The system selects the required
amount of smoothing automatically on a per-sample basis, which allows to
keep more detail of the original image and therefore is less susceptible to the
aperture problem. It can be seen as a generalization of the pyramid con-
cept traditionally used in displacement estimation. Although the evaluation
showed superiority using local feature alignment, the concept can be applied
to a much broader range of parameter estimation applications such as camera
tracking or homography estimation.

4.3.5 Practical Optimization for LAF correspondences

Additionally to the novel concept for incorporating uncertainty into the grey-
value optimization process, the Bayesian optimization model according to
Molton et al.[Molton et al., 2003] is applied, i.e. a prior on the warp param-
eters is used in optimization. Furthermore, instead of strict Gauss-Newton-
optimization a line-search mechanism is applied, which accepts only improve-
ments of the error function and otherwise reduces the step size, similar to a
Levenberg-Marquardt optimization. Since often the photometric appearance
of local features changes, this is handled using a a�ne brightness model. The
embedding of such appearance models in the estimation process is described
in [Baker et al., 2003]. When the start value for optimization is obtained
from local image features, the relative a�ne brightness parameters from the
detectors can be used as an initialization.

When the a�ne approximation of the warp is not su�cient the residual
grey value di�erences will be large. One possibility to solve this problem
is to perform model selection (as proposed e.g. by Torr [1997] for two-view
geometry) and, in case the a�ne approximation is not well suited, to estimate
the next higher Taylor representation. The higher coe�cients should be close
to zero and can consequently be initialized with zero. Since they represent
even more global properties than the �rst derivatives, estimating them from
a local region is more uncertain than for the �rst derivatives. However, if
they allow for correct estimation of the �rst derivatives they can be neglected
afterwards.

4.4 The Local A�ne Frame as an Uncertain

Measurement

If a LAF correspondence is obtained from noisy image data, it is only an
estimate of the true LAF correspondence. This section now derives the un-
certainty concept. Three di�erent cases of obtaining the correspondence are
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considered here:

4.4.1 Obtaining and Representing Uncertainty

Obtained from Feature Detector

When LAFs are detected in each image independently, the parameters of each
individual LAF are uncertain. In this thesis the pdf of the LAF of equation
(4.5) as a 6-vector lLAF

lLAF = (fx fy a11 a12 a21 a22)T (4.30)

is represented by two moments, a mean and a covariance. These can be ob-
tained e.g. from noise models[Steele and Jaynes, 2005] or from empirical fea-
ture detector evaluations[Mikolajczyk and Schmid, 2004a]. If the uncertainty
of the transformation between the two regions is desired, error propagation
as described in appendix B.4 can be used to obtain the uncertainty of the
LAF correspondence.

Obtained from Image Alignment

Given such a relative uncertainty for the LAF correspondence, the image
alignment of section 4.2.5 can be applied to obtain better correspondence
parameters for equation (4.12).

lLAFC = (dx dy arel,11 arel,12 arel,21 arel,22)T (4.31)

In the minimum of the error function, the reference variance and the structure
of the normal equation system from the Lucas-Kanade minimization directly
lead to an estimate of the uncertainties (see also section C.1.3).

To obtain individual uncertainties for each LAF, error propagation can
again be exploited to concatenate the �rst LAF's uncertainty and the trans-
formation's uncertainty to obtain the second feature's uncertainty. If the
�rst feature is de�ned to be an absolute reference its uncertainty can be set
to zero.

Obtained From Three or More Point Correspondences

In the same way as three point correspondences can be sampled from a LAF
correspondence using the triangle transform (compare section 4.2.4), a LAF
correspondence can be approximated using three or more close point corre-
spondences. This holds because three point correspondences de�ne an a�ne
transformation, which may be obtained using DLT. If uncertainty is given
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for the points, then error propagation can be used to obtain an uncertainty
estimate for the LAFs. For more than three points the system is overdeter-
mined and a least squares solution can be obtained including a covariance
estimate for the parameters.

Relating Displacement and Linear Warp Parameters

If the uncertainty of a patch corner is given, this allows to infer the uncer-
tainties of the a�ne parameters under some reasonable assumptions:

Assume that a patch corner is mapped by the a�ne transform to some
position in the other image according to equation (4.12), where the patch
center is assumed to be in the origin. Also, its movement is disregarded here
and only the linear warp of the patch is considered now. Then the corner
with o�set (d, d)T from the patch center is mapped to a new o�set c from
the transformed patch center in the other image, caused by the linear warp
Axy:

c = Axy(d d)T =

(
a11 a12

a21 a22

)
(d d)T (4.32)

Rewriting this equation in the entries aij of A yields:

c = Da where a =


a11

a12

a21

a22

 and D =

(
d d 0 0
0 0 d d

)
(4.33)

This shows that the linear warp parameters map linearly with D to the new
corner position. Given the covariance Σcc of the warped corner, the question
arises, whether something can be stated for the covariance Σaa of the a�ne
parameters. Since the above equation is linear, linear error propagation (see
section B.4) relates these uncertainties:

Σcc = DΣaaD
T (4.34)

If, for symmetry reasons, it is assumed that all four entries of A have the same
uncertainty σa and are uncorrelated, their distribution can be expressed by
a diagonal covariance Σaa:

Σaa = σ2
aI4×4 (4.35)

If on the other hand an isotropic empirical uncertainty σc of the patch corner
is assumed, linear error propagation yields:

σ2
c I2×2 = σ2

aDI4×4D
T = 2d2σ2

aI2×2 (4.36)
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This leads to the relation

σc =
√

2 |d|σa (4.37)

between the uncertainty of a transformed position and the uncertainty of
the warp parameters. This means, that for a patch of half window size
d = 30, some isotropic uncertainty of the linear warp parameters leads to an
approximately 40 times3 larger position uncertainty of the transformed patch
corners (plus a potential uncertainty of the patch center). If on the other
hand it is known that the corners of the patch can be estimated (e.g. by an
a�ne tracker) with an uncertainty of 1 pixel, the above assumptions provide
0.02 as an estimate for the upper bound of A's uncertainty, and typically some
of the uncertainty is already due to an overall patch position uncertainty.

4.4.2 Empiric Covariance

The uncertainty of the LAF correspondence depends on various sources of
noise and inaccuracies of the model as described in the previous paragraphs.
Particularly the uncertainty of the linear warp parameters is di�erent from
the uncertainty of the displacement parameters. In the previous section the
uncertainty footprints of the a�ne parameters have been derived, i.e. their
impact on a warped patch corner uncertainty. Since the error of the corners
of a patch are due to position and linear warp error, a a plausible ratio for
moderately sized patches would be in the range of 1%, although in practice
this certainly depends on the image data. In maximum likelihood estimation
or other algorithms that require an estimate of the covariance, therefore an
empiric covariance for the relative parameters is set to

Σempiric =


1

1
0.0001

0.0001
0.0001

0.0001

 (4.38)

if no other information is available.

3For clarity's sake, here and in the remainder of the thesis the unit pixel for image
distances is left out. It is assumed that all image measurements are made in pixel, i.e.
that σc and d in equation (4.37) are given in this unit. In the same sense it is assumed
that the units used when relating objects of di�erent domains are given consistently.
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4.4.3 Incidence and Outlier Detection

When automated matching techniques are applied, often RANSAC-like meth-
ods (see appendix C.1.7) are used to perform a model-based veri�cation of
the matches: given a LAF correspondence in two images, the question may
arise whether these two observations are consistent with some transforma-
tion between these two images. For instance, if two images are related by a
known homography, it might be asked whether the LAF correspondence can
be a reasonable match or whether it is highly unlikely to measure such a cor-
respondence (a potential outlier) given the known homography. For simple
point correspondences, the distance between the predicted and the measured
position can be thresholded, but for local a�ne frames this is more involved.

For instance, when evaluating descriptor performance in wide baseline
matching, Mikolajczyk and Schmid [2005] were faced with the problem to
automatically reject matches not only when the position of the feature was
inconsistent with a known transformation, but also if the features did not
cover the same area (e.g. a large feature and a small feature but with con-
sistent position). To solve this problem they used a scalar measure called
the overlap error, which was introduced already in the evaluation of feature
detectors [Mikolajczyk et al., 2005]. This measure is based upon the ratio of
the union and the intersection of two regions. The drawback of this measure
is that it completely ignores the local orientation of the region. To account
for this, Köser and Koch [2007] introduced the oriented overlap error, which
additionally penalizes di�erent orientations of the LAFs.

Still, in these geometrically motivated measures it is di�cult to incorpo-
rate uncertainty, because some LAFs may have been measured more accu-
rately than others and also within a LAF the uncertainty of the parameters
may vary. Therefore, in the following section statistical means (as proposed
in [McGlone, 2004, p.77]) will be exploited to reject matches when there is
statistical evidence that they are inconsistent with a model transform.

Incidence with Respect to A�ne Transforms

For simplicity �rst assume that two images are related by an a�ne transform
H and that the parameters lI1 and lI2 (according to equation (4.30)) of the
two LAFs AI1 and AI2 of both features are normally distributed with given
mean and covariance. First, only the LAF in image 1 is inspected: It can be
transformed to a new LAF in the second image using the linearization HTaylor

of H according to equation (4.19). For a�ne functions, the linearization of
the function is the function itself, so that HTaylor is only the matrix notation
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of H here:

AI2
I1 = HTaylor AI1 where HTaylor =

 v11 v12 v13

v21 v22 v23

0 0 1

 (4.39)

As can easily be seen this is also an a�ne transformation in the parameters
lI1 of the local a�ne frame AI1:

lI2I1 = MlI1 + b (4.40)

where b and M can be computed from rearranging the previous equation.
Therefore the parameter uncertainty transfers with the Jacobian (or the lin-
ear part) M of this transform, which is not an approximation because the
transform is a�ne:

M =


v11 v12 0 0 0 0
v21 v22 0 0 0 0
0 0 v11 0 v12 0
0 0 0 v11 0 v12

0 0 v21 0 v22 0
0 0 0 v21 0 v22

 (4.41)

Consequently, in image 2 the transformed local a�ne frame is normally dis-
tributed with mean lI2I1 and covariance

ΣlI2
I1l

I2
I1

= MΣlI1lI1M
T (4.42)

Now, the parameters lI2 of the original LAF in the second image are consid-
ered. The di�erence between lI2I1 and l

I2

ldiff = lI2I1 − lI2 (4.43)

is then also normally distributed (see appendix B.2.1) with covariance

Σldiffldiff
= ΣlI2

I1l
I2
I1

+ ΣlI2lI2 (4.44)

If the two original LAFs are in correspondence, then ldiff should have
zero mean and its squared Mahalanobis distance d2

0 to the origin must be
χ2-distributed.

d2
0 = lTdiffΣldiffldiff

ldiff (4.45)

If the probability of measuring a squared distance equal to or larger than
d2

0 is small, the incidence hypothesis can be rejected (compare appendix
B.3.1). This means there is statistical evidence that the measured LAF cor-
respondence is inconsistent with the assumed model and should be classi�ed
as a mismatch or an outlier.
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Incidence with Respect to Homographies

A homography can locally be linearized using an a�ne transformation. Un-
der the assumption that the linearization is approximately the same for the
measured and the true position of the a�ne feature, using linear error propa-
gation, the LAF of the �rst image including its covariance can approximately
be transferred into the second image. Then the same method as before can
be applied.

4.4.4 Maximum-Likelihood Estimation

In the last sections it has been shown how the LAF correspondence can be
viewed as an uncertain measurement. Therefore, when LAF correspondences
are obtained in the presence of noise, the question arises how a fair weighting
between unequally reliable observations can be done. Maximum Likelihood
estimation is a method to �nd the most likely set of model parameters that
can explain such observations (details on estimation can be found in appendix
C.1.2).

More formally, assume that lLAFC,i are the means of n observed, normally
distributed LAF correspondences (for i ∈ {1, .., n}) according to equation
(4.31). Let the covariance of each such observation be encoded into a 6×6
covariance matrix ΣlLAFC,ilLAFC,i

. It is assumed now that Hh [x] is a model
function for which the most likely parameter set h is searched. For instance,
if H is a homography then the eight degrees of freedom of H can be encoded
into an 8-vector h (cf. to section 2.3.2). If lLAFC,i is a perfect noise-free
observation at position xi, then the local linearization of H at that position
must equal that measured linear warp, so that the residual ri is zero

ri = lLAFC,i −

 Hĥ [xi]− xi
vec

[
∂H ^h
∂x

∣∣∣
xi

]  (4.46)

If lLAFC,i is noisy however, then ri should still be small for the correct h.
The approach can then be reformulated in the Gauss-Markov model (cf. to
[McGlone, 2004]) as a minimization problem to �nd the most likely ĥ:

ĥ = argminh
∑
i

rT
i Σ−1

lLAFC,ilLAFC,i
ri (4.47)

Since lLAFC,i is normally distributed, this is the maximum likelihood esti-
mator for h[Mikhail and Ackermann, 1976]. The minimization can be solved
e.g. using any of the Newton-like algorithms of section C.1.4.
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4.4.5 Evaluation: Measuring and Finite Area Approxi-

mation

In the previous section, the geometrical model for local a�ne frame corre-
spondences has been derived and it was shown how a given local a�ne frame
correspondence imposes constraints. Of course, such given correspondences
are usually measured from images and in this section the principal feasibility
of obtaining such correspondences is shown and how the model assumptions
�t to the real world.

When classical point correspondences were determined between images,
often the assumption of constant displacement has been made. This means
that a constant size window is compared to candidate windows in the other
image (as e.g. in [Skoglund and Felsberg, 2006]) or that in a parametric
model constant displacement is assumed for a whole window to obtain the
o�set parameters (as e.g. in [Lucas and Kanade, 1981]). Consequently, the
in�nitely small point is in fact measured by a �nite area.

In the same way, here also the Jacobian of the warp has to be measured
using a �nite area. This weakens the assumptions about the transformation
compared to point matching since no constant displacement is assumed but
only a constant change of displacement (the Jacobian). However, still, when
a window-based method is exploited to compute a simple local 6-parametric
warp as common in a�ne trackers, the assumption is that the higher order
derivatives are neglectable in the window.

If the warp is known to be a homography, it is also possible to param-
eterize the homography using the six LAF correspondence parameters and
two in�nity parameters (see e.g. [Köser et al., 2008]). This avoids lineariza-
tion of the homography at the price of estimating two additional parameters.
For other transformations than homographies, instead, the second deriva-
tives could be estimated if they are not neglectable in the window. So, even
if non-linearities are observable in the window, there are ways to avoid a
linearization error when the Jacobian is estimated.

Nevertheless, for small regions a constant Jacobian can be assumed and
measured using a simple six-parametric a�ne warp. As explained in detail
in section A.2 for homographies, the region should be far from the preimage
of the line at in�nity because the Jacobian changes very strongly near this
region. To evaluate this behavior, in �gure 4.14 a plane has been rotated
in 3D and the texture warp between an orthophoto and an oblique view
onto the surface is computed. The a�ne transform is then compared to the
linearization of the ground truth homography. A warped local region can
be seen in �gure 4.15 for the views. In �gure 4.16 the quality of the esti-
mated local linearization is plotted as the Mahalanobis distance of the LAF
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Figure 4.14: Rotated Plane in 3D by 20◦, 30◦, 40◦ (upper row) and 50◦,
60◦, 70◦ (lower row). The images are related to the orthophoto through a
homography.

Figure 4.15: A�ne approximation of homographies of �gure 4.14. Local
features have been warped from the 10◦ to 70◦ views into the orthophoto
using gradient-based image registration (a�ne warp). The �nal regions are
displayed for one sample feature. Apart from the decreasing x-resolution due
to the oblique angle, nearly no visual di�erences are noticeable.
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correspondence to the �rst order Taylor approximation of the ground truth
homography using the constant empiric covariance of the previous section.
In this evaluation, it can be seen that the quality of �rst order Taylor ap-
proximation does not depend so much on the average viewing angle but on
the change of viewing angle and therefore change of Jacobian within a patch.

This must be seen in comparison with the small baseline matching prob-
lem (point correspondences), used e.g. in standard stereo: In such scenarios
�xed rectangular windows in the two images are compared and exploited to
�nd the correspondence. This works well as long as the o�set between the
images is approximately constant for the whole window. The o�set is the zero
order Taylor approximation of the local warp. With the LAF correspondence
now this assumption is relaxed to the �rst order Taylor approximation. Here,
the o�set may vary within a patch, but only in a linear fashion, i.e. the change
of the o�set variation should be approximately constant within the patch.

If on the other hand the Jacobian is visibly not constant across the patch
and the curving disturbs the Jacobian estimation for the center, these non-
linearities can be measured and even exploited. A way to cope with this is
to apply a higher order model, e.g. to directly measure the last two degrees
of freedom for a homography or to simply compute second derivatives in the
patch. If the second derivatives can be measured reliably (e.g. for relatively
large patches), the model presented in this chapter can be extended to sec-
ond derivatives in a straightforward way. If on the other hand they can only
be measured approximately this leads to extrapolation errors far from the
Taylor approximation point. However, even if the second derivatives are not
absolutely correct, it is still possible that they locally compensate for non-
linear e�ects, allowing for a better estimate of the �rst derivatives and thus
the LAF correspondence. In that case after having stabilized estimation of
the Jacobian, the exact value of the second derivatives is of no interest. The
evaluation of the second derivatives is however out of scope of this thesis.

4.5 Relation to other Primitives

The presented work is actually related to the 1D curvature concept used by
Schmid and Zisserman [2000]. At the same time it can also be viewed in the
context of conic correspondence, where it is more powerful than traditional
conics and leads to simpler equations in homography estimation. In a way
the simplest relation is to a set of point correspondences which are spatially
very close. This relation is analyzed �rst.
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Figure 4.16: A�ne approximation of oblique angle homographies using a�ne
warps with di�erent half window sizes. In this evaluation, a plane has been
rotated in front of a camera, which is the same relative transformation as
if a camera is moved along an orbit around a �xed plane. In the left �gure
the plane is seen from further away using a more zoomed in focal length
of 3200 pixels while rotating. In the right �gure the plane is imaged from
a closer distance with a very wide angle (90◦ �eld of view) focal length of
400 pixels. Local windows distributed across the image have been tracked
between an orthophoto and a rotated view based upon an a�ne warp only.
The Mahalanobis distance based on a constant empiric covariance (see section
4.4.2) is plotted on the y-axis. It can be seen that the error is larger when
the window is larger (compare the three curves for three di�erent window
sizes). Additionally, the a�ne �t to the homography degrades with increasing
viewing angle (from 0◦ to 60◦). However, the most important observation is
that the a�ne approximation is much better in the left �gure with large focal
length and small �eld of view. A plausible reason is that in this setting the
Jacobian changes much less in a window (compare also appendix A.2 and
�gure A.2).
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4.5.1 Triple of Points

An a�ne transformation has six DOF and is determined by three point corre-
spondences in general. Consequently, a LAF correspondence and three point
correspondences carry comparable geometric information.

In the work of Chum et al. [2003], Perdoch et al. [2006], it was proposed
to estimate epipolar geometry from only three resp. two a�ne feature corre-
spondences. In each of these, three point correspondences are obtained using
an extra detection step in the local a�ne frame. This converts the set of
a�ne feature correspondences into a three times larger set of point corre-
spondences. Riggi et al. [Riggi et al., 2006] on the other hand proposed to
sample the a�ne feature directly using some �xed coordinates in the LAF,
and do not require to detect and match additional points (called triangle
transform in section 4.2.4). This sampling (also called triangle transform in
this thesis) has the potential drawback, that if the sampling radius is cho-
sen too large, the three point correspondences have a bias towards an a�ne
transform. If three independent point correspondences are actually detected
as in [Chum et al., 2003, Perdoch et al., 2006] this is avoided at the cost of
additionally detecting and matching these points.

In any case, three points that are very close to one another can lead to
numerical di�culties in practical point-based estimation algorithms. Aside
from that, the LAF correspondence is equivalent to three in�nitesimally close
point correspondences and sampling the LAF correspondence can be thought
of as a numerical derivative of the image transform.

4.5.2 Conic Correspondence

In this section the di�erential feature concept is shown to be a simpli�ed
version of correspondences of conics, providing more constraints in a linear
(instead of quadratic) fashion.

First, it is shown how the two primitives used in the LAF correspondence
can be related to conic representations: For each a�ne feature, e.g. MSER,
there exists a local image coordinate system, the local a�ne frame, such
that coordinates can be speci�ed relative to the size, shear, position and
orientation of a feature. Imagine that L is a local a�ne frame according to
equation (4.5) and takes (projective) points from local feature coordinates to
image coordinates:

xI = LxLAF (4.48)

If the same feature is seen in two images, points with identical feature co-
ordinates will (ideally) have the same grey value. The local a�ne frames
of the features in the di�erent images are then called L1 and L2 and their
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concatenation is the �rst order Taylor approximation HTaylor of the texture
warp (e.g. a homography) between the two images at the feature positions
(compare also equation (4.19)):

HTaylor = L1L
−1
2 ⇐⇒ L1 = HTaylorL2 (4.49)

Now just think of a single image and imagine a small circle through the points
(0;λ)T,(λ; 0)T,(0;−λ)T and (−λ; 0)T of the local feature coordinate system.
It can be represented by a conic equation such that all points x at the circle
contour ful�ll the quadratic constraint:

0 = xT
LAF

 1
1
−λ2

xLAF (4.50)

In image coordinates this is an ellipse and the conic equation reads as

0 = xT
i LTdiag(1, 1,−λ2)Lxi (4.51)

The LAF described as a conic matrix would therefore be

Cλ = LT

 1
1
−λ2

L = LTRT

 1
1
−λ2

RL (4.52)

where R is an arbitrary (homogeneous 2D) rotation matrix, which cancels
out. Therefore the �rst thing to observe is that 2D orientation of the feature
is lost in conic representation. A conic has only �ve degrees of freedom and
a conic correspondence therefore imposes at most �ve constraints on any H.

C1 = HTC2H (4.53)

Furthermore, these constraints are quadratic in the entries of H as can be
seen from equation (4.53). This equation is also essentially a squared version
of equation (4.49).

As a side note, the LAF correspondence is available when su�cient tex-
ture is in the image, while the conic correspondence traditionally exploits a
special geometric shape (typically an ellipse contour) and ideal perspective
cameras and ideal planes because conic curve estimation in distorted cam-
eras is more involved. In contrast, the di�erential feature concept can also
directly be applied in �sh-eye or omnidirectional cameras.
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Relation to the Absolute Conic

The suppression of orientation information in conic representation is a prop-
erty that is sometimes desirable, for instance in self-calibration (e.g. [Hartley,
1994]). Here, the absolute conic (AC) is a virtual conic on the plane at in-
�nity that maps into a perspective camera regardless of the orientation of
the camera. Its projection into the image, the image of the absolute conic
(IAC), therefore depends only on the internal camera parameters and can
be exploited for self-calibration. The relation between the AC and the IAC
cannot be expressed as a LAF correspondence because virtual conics do not
contain any real points, at which the mapping function could be linearized.
Furthermore, even for the real points in the 2D coordinate system of the
plane at in�nity no regular a�ne warp can be obtained into a pinhole cam-
era image. The reason for this is that there would be an in�nite local scaling
between the two coordinate systems. However, the in�nite homography be-
tween two images almost always4 has a �nite Jacobian and therefore allows
for linearization and application of LAF correspondences.

Many self-calibration approaches are based upon virtual quadric-to-conic
correspondences or conic-to-conic correspondences, which make the formu-
lation independent of the camera orientation. However, most of these ap-
proaches lead to quadratic formulations (compare [Frahm, 2005]). Frahm
showed [Frahm, 2005, Frahm and Koch, 2003] that the quadratic self-calibra-
tion equations arising from the rotation-invariant formulation become linear
if rotation information is available and exploited. This idea is comparable
to the �ndings of the previous section about the relation of conics and local
a�ne frames.

4.5.3 Curves

Schmid and Zisserman [2000] inspected the behavior of planar curves under
homography transformation. Compared to a�ne features, curves can usually
be thought of as locally 1-dimensional image regions and there exists a 1D
(scalar) parameter τ , which allows running along the curve C, i.e. reaching
all points on the curve:

C :
{
x ∈ R2|∃τ ∈ R : C [τ ] = x

}
(4.54)

For each point on the curve the tangent to the curve de�nes the local direc-
tion. In the following, for simplicity it is assumed that τ is from a natural

4Since the in�nite homography must have full rank by construction and homographies
map lines to lines, it must map a line to the line at in�nity. Outside this line, which is a
null set in the plane, the Jacobian is �nite.
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(arc length) parameterization of C. Then the tangent direction is given by

tangent [x] =
∂x

∂τ
(4.55)

The rate of direction change of the curve is called the curvature κ. Therefore,
for each (euclidean 2D) point on the curve, a scalar curvature measure can
be obtained:

κ [x] =

∥∥∥∥∂2x

∂τ 2

∥∥∥∥
2

(4.56)

Analogous to a �rst order Taylor approximation, a point and the tangent
of a curve are local properties. The curvature (as the change of the tangent)
is already a more global property. The more global properties are taken
into account (the higher order derivatives of the curve) the more information
can be obtained about the unknown transformation when two curves are
corresponding in two images. However, as for the second derivatives of a
function, physically obtaining the curvature requires also a larger support
region for measurement.

Schmid and Zisserman derived how this curvature changes when the curve
is transformed by a homography. Here, they exploited the behavior of the
tangent vector. Compared to the local a�ne frame, where two indepen-
dent basis vectors are attached to the point this carries less information and
therefore provides less constraints, however, it can be considered as being a
one-dimensional version of the LAF correspondence.

If many points on a curve are considered with their curvature, this can
fully determine the homography or transformation under consideration. The
same is also true if multiple LAF correspondences are considered on a tex-
tured surface.

4.6 Summary

This chapter presented a geometrical representation for the local a�ne frame
(LAF) and showed how a LAF correspondence imposes constraints onto a
global warping function through its �rst order Taylor representation. These
local linear shape change constraints can be explained by concatenating
region-normalization transformations used in photometric matching (photo-
metric interpretation) or by a covariantly transformed local coordinate sys-
tem (physical interpretation).

In practice the LAFs can be obtained from state-of-the-art robust image
features or e.g. the KLT tracker and are often readily available. Addition-
ally, simpler correspondences (e.g. corners) can often be upgraded to such a
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full �rst order Taylor model and also feature re�nement is possible through
gradient-based optimization, for which a generalization of the traditional
pyramid-approach has been proposed to increase the basin of convergence.
Finally, correspondences of LAFs as a geometric primitive have been related
to triangle correspondences, to change of curvature and to conic correspon-
dences, which are essentially sampled LAFs, related to 1D LAFs or a squared
formulation (respectively) of the LAF approach.

In the next section the model is exemplarily applied to several estimation
problems of computer vision, such as homography, pose or normal estimation.
It is shown how the local shape change constraints can be exploited to obtain
direct solutions for these problems with fewer feature correspondences or
more reliably than when only the position information is used as in traditional
point-based approaches and how maximum-likelihood estimation is possible
based on uncertain LAF measurements.



Chapter 5

Applications: Geometric

Estimation with Local A�ne

Frame Correspondences

As explained in the previous chapter, the LAF correspondence (point and
local linear warp) is directly related to the Taylor representation of the warp.
A major bene�t of this parameterization of the correspondence is that once
it is determined using image data as proposed in chapter 4, the obtained
parameters can be used afterwards in a purely geometrical way: the repre-
sentation is not restricted to a single special method but the same measured
correspondence data can be used in various algorithms, be it for the pre-
cise 2D localization in tracking, the estimation of a conjugate rotation, the
camera pose, or to obtain the 3D surface normal. This is the same as when
dealing geometrically with point correspondences: it is not strictly required
for each algorithm to go back to the image data and reparameterize in di�er-
ent sets of parameters: the six parameter representation is general and can
be seen as an extension of the point correspondence.

In this chapter it is exploited now to obtain constraints onto the unknown
transformation. Of particular interest in the last years were solutions that
are based on very few data or even minimal solutions [Brown et al., 2007,
Nistér, 2004, Chum et al., 2003, Perdoch et al., 2006, Riggi et al., 2006, Köser
et al., 2008, Köser and Koch, 2008a, Kyle, 2004, Nistér and Stewénius, 2006,
Stewénius, 2005]. In the case of a minimal solver, a model with n DOF
is estimated from an observation providing exactly n DOF. Often multiple
observations are required and each observation may be m-dimensional or im-
poses m constraints (e.g. mp = 2 for a two-dimensional point or mLAF = 6
for a LAF in homography estimation). From a counting argument, if n is
an integer multiple of m, then a solution made up from n

m
observations is a

79
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minimal solution. The solutions presented in the following are either min-
imal or quasi-minimal, which means here that the solution is based upon
d n
m
e observations (the next full integer number), if n

m
is not an integer. Con-

sequently, such a quasi-minimal solution uses only slightly more data than
theoretically required, e.g. when models with an odd number of parameters
are estimated from two-dimensional observations, theoretically only "half"
of the last observation is required1.

Solutions that require (quasi-)minimal sets of data are particularly impor-
tant in RANSAC-like approaches, where the probability to select an all-inlier-
set decreases exponentially with the number of correspondences required. In
this �eld it has been shown that sampling an a�ne feature into three point
features improves RANSAC performance for fundamental matrix estimation
[Chum et al., 2003], because now only three instead of seven correspondences
are required to construct a hypothesis. Consequently, in the next section such
(quasi-)minimal solutions are derived based on the LAF correspondence, de-
creasing the number of feature correspondences required up to a factor of
three.

Although these transformations are not restricted to homographies, these
are very important and quite often used (see appendix A.2 for a discussion
on homographies in Euclidean space). Particularly since the correspondences
are small, it is often reasonable to assume planar surfaces across these small
regions and also to approximate the small image part using an ideal pinhole
camera, even if it is part of a �sh-eye image. Consequently, in this chapter
the power of the LAF correspondence is demonstrated using homographies
although the concept may as well be used for estimating radial distortion or
for working with curved surfaces.

Since the LAF correspondence provides six constraints, a lower bound
on the number of correspondences required to obtain a model is obvious.
In the following section, the estimation of a general homography (8 DOF), a
conjugate rotation (7 DOF), camera or object pose (6 DOF) and 3D position
and normal of a patchlet (5 DOF) is shown.

1An example is the estimation of the projection matrix from six 2D-3D point corre-
spondences in the DLT algorithm [Hartley and Zisserman, 2000, pp.167]. The six observed
points in the image add up to 12 measurements, while the projection matrix has only 11
DOF. In case there is no noise on these points they all agree on the true projection ma-
trix, otherwise the redundancy can be exploited to obtain a least squares solution. One
could also argue that if only the x-coordinate of the last point is used, then DLT would
be a minimal solver. However, in presence of noise it is usually preferable to exploit all
data available, and when points are measured each does usually have two coordinates in
practice.
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5.1 General Homography

5.1.1 Previous Work on Homography Estimation

According to the work summarized in section 3, a general homography has
eight DOF and can be computed from four points or lines [Hartley and Zis-
serman, 2004] or from two conic correspondences[Kannala et al., 2006]. Since
each conic can provide �ve constraints this is in agreement with counting.
However, several matrix factorizations are required and due to the quadratic
nature of the conic correspondence, the authors obtain four possible solu-
tions. In this section, the computation of a general homography from two
a�ne correspondences is derived using the di�erential constraint from equa-
tion (4.15). In the next paragraphs, a unique solution is obtained in a direct,
non-iterative way.

5.1.2 Obtaining a General Homography

from Two Feature Correspondences

A general homography H is a transformation with eight degrees of freedom,
which maps points x from one (image) plane to points y in another (image)
plane:

H [x] = y = euc [H hom [x]]

In projective space, homographies are linear transformations and can be rep-
resented by 3×3 matrices:

H =

 hT
1 t
hT

2

hT
3 λ

 h1,h2,h3, t ∈ R2, λ ∈ R (5.1)

If H is considered as a mapping from R2 to R2, the homogenization must
be taken into account and the mapping is non-linear:

H [x] =

 hT

1x+tx

hT

3x+λ

hT

2x+ty

hT

3x+λ

 (5.2)

The derivative is therefore not constant, but a function of x:

∂H

∂x
[x] =

1

(hT
3x+ λ)2

(
hT

1 (hT
3x+ λ)− hT

3 (hT
1x+ tx)

hT
2 (hT

3x+ λ)− hT
3 (hT

2x+ ty)

)
(5.3)
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To estimate the parameters of such a mapping using a�ne feature corre-
spondences, the di�erential constraint of equation (4.15) is applied. First, it
is assumed that a LAF correspondence is available with local a�ne frames

AI1
G =

 A
I1
G xG

0 0 1

 and AI2
G =

 A
I2
G yG

0 0 1

 (5.4)

However, to improve readability, initially the �rst image's coordinate system
is changed by moving the a�ne feature at xG to the origin and the second
image's coordinate system by moving the corresponding feature at yG to the
origin, i.e. now a transformation G in which the origin is a �xpoint must be
estimated:

G [0] = 0 (5.5)

G = K−1
G2HKG1 (5.6)

where the displacement matrices K∗ look like this:

KG1 =

 I2×2 xG

0 0 1

 ,KG2 =

 I2×2 yG

0 0 1

 (5.7)

Since these matrices are triangular, it is easy to observe that their determi-
nant equals 1. This implies that the normalized G and H from equation
(5.6) have the same determinant:

det [G] = det [H] (5.8)

From equation (5.5) it follows that G must look like this:

G =

 gT
1 02gT
2

gT
3 λG

 (5.9)

The derivative of G as an R2 → R2 mapping is

∂G

∂x
[x] =

1

(gT
3x+ λG)2

(
gT

1 (gT
3x+ λG)− gT

3 (gT
1x)

gT
2 (gT

3x+ λG)− gT
3 (gT

2x)

)
(5.10)

which, at the feature position, must equal the concatenated linear warp AG
of the local a�ne frames (see equations (4.11) and (4.12))

AG = A
I1
G A

I2
G

−1
(5.11)
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according to equation (4.15):

∂G

∂x

∣∣∣∣
02

= AG (5.12)

Substituting the parameters of G yields:(
gT

1

gT
2

)
= λGAG (5.13)

Obviously, g3 is still undetermined, which essentially means that there is no
information yet which points map to in�nity. One a�ne feature correspon-
dence is not su�cient to �x a general homography with its eight degrees of
freedom. Analogous considerations can be made when a homography must
be estimated from three close points (a small triangle), which also does not
completely determine all parameters.

Now a second correspondence at xF in image 1 and yF in image 2 is
considered to �x the remaining degrees of freedom. If a simple point-to-point
correspondence is used, one might assume at �rst sight, that it would provide
two more constraints and hence determines the homography. However, a
closer look at the remaining degrees of freedom reveals that mainly the pre-
image of the line at in�nity (see section 2.3.2) is still unconstrained because
the last row of G has not been determined so far. One additional point
correspondence can not determine the line at in�nity. Algebraically, using
another point correspondence creates only new equations, in which the scalar
product of the new point and the last line of G appear, this way leaving
an ambiguity for its individual entries. Geometrically this means that the
feature at xF does only contribute information in direction from xG to xF ,
but does not completely determine the whole behavior.

Therefore, the second correspondence is assumed to be a LAF correspon-
dence and is treated in the same way as the �rst: A normalized homography
F is constructed using the normalization matrices KF0 and KF1, which now
move xF respective yF to the origins:

F = K−1
F2HKF1 (5.14)

Since equation (5.8) applies also to F, one may set2 λF = 1, choose λG such
2Please note that choosing λF = 1 does not imply λ 6= 0 and therefore keeps the

generality of the approach. To show that λF = 1 is reasonable, it is �rst argued that
it is the ninth parameter in an up-to-scale representation of a 3×3 matrix. Since only
relative sizes are of interest in projective entities, one entry can be �xed. Special care
must however be taken if in�nite ratios would occur, i.e. if λF = 0. This can however not
be the case because λF = 0 means that F no longer transforms the origin (xO = (0, 0, 1)T)
to a �nite position. By construction of F however, it is known that the origin is a �xpoint
of F (equation (5.5)), therefore λF cannot be zero.
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that

det [G] = λGdet

[(
gT

1

gT
2

)]
= det

[(
fT

1

fT
2

)]
= det [F] (5.15)

Note that neither determinant of the above can become zero unless the a�ne
feature degenerates to a line, so that λG can be computed

λG = 3

√
det [AF ]

det [AG]
(5.16)

Now, F and G are determined up to two parameters, and equation (5.16)
constrains also λ in the searched homography H, because all three homogra-
phies di�er only by a coordinate system o�set:

H = KG2GK−1
G1 = KF2FK−1

F1 (5.17)

Expanding the above matrix equation yields

H =

 1
yG1
1

 gT
1

gT
2

gT
3 λG

 1 −xG1
1

 =

 1
yF1
1

 fT
1

fT
2

fT
3 1

 1 −xF1
1

 (5.18)

Using

xF =

(
xF1

xF2

)
yF =

(
yF1

yF2

)
xG =

(
xG1

xG2

)
yG =

(
yG1

yG2

)
this can be expanded to:

H =

 g11 + g31yG1 g12 + g32yG1 −gT
1xG + yG1(−gT

3xG + λG)
g21 + g31yG2 g22 + g32yG2 −gT

2xG + yG2(−gT
3xG + λG)

g31 g32 −gT
3xG + λG



=

 f11 + f31yF1 f12 + f32yF1 −fT
1xF + y11(−fT

3xF + 1)

f21 + f31yF2 f22 + f32yF2 −fT
2xF + y12(−fT

3xF + 1)

f31 f32 −fT
3xF + 1

 (5.19)



5.1. GENERAL HOMOGRAPHY 85

The upper left part of G and F is known from the a�ne matrices (compare
equation (5.12)). The scale λF and λG are determined as pointed out before.
Thus, the only remaining parameters are f 3 and g3.

g31y01 − f31y11 = −g11 + f11

g32y01 − f32y11 = −g12 + f12

y01(−gT
3x0 + λG)− y11(−fT

3x1) = gT
1x0 − fT

1x1 + y11

g31y02 − f31y12 = −g21 + f21

g32y02 − f32y12 = −g22 + f22

y02(−gT
3x0 + λG)− y12(−fT

3 x1) = gT
2x0 − fT

2x1 + y12

gT
3x0 − fT

3x1 − λG = −1

The last row of a homography is the line that is mapped to in�nity (pre-
image of the line at in�nity) because all points that lie on this line have a
zero scalar product with this row. From equation (5.19) it can be seen that
the pre-images of the lines at in�nity under G, F and H are parallel lines,
because the line normals fT

3 , g
T
3 and hT

3 are equal and this is reasonable
since the coordinate systems in which these matrices work di�er only by
a displacement (the feature position). All that remains to obtain H is to
determine this pre-image of H.

h31y01 − h31y11 = −g11 + f11

h32y01 − h32y11 = −g12 + f12

y01λG − h31y01x01 − h32y01x02 + h31y11x11 + h32y11x12 = gT
1x0 − fT

1x1 + y11

h31y02 − h31y12 = −g21 + f21

h32y02 − h32y12 = −g22 + f22

y02λG − h31y02x01 − h32y02x02 + h31y12x11 + h32y12x12 = gT
2x0 − fT

2x1 + y12

h31x01 + h32x02 − h31x11 − h32x12 − λG = −1

Rewritten in matrix notation, this yields

y01 − y11 0
0 y01 − y11

y11x11 − y01x01 y11x12 − y01x02

y02 − y12 0
0 y02 − y12

y12x11 − y02x01 y12x12 − y02x02

x01 − x11 x02 − x12


(
h31

h32

)
= (5.20)
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f11 − g11

f12 − g12

gT
1x0 − fT

1x1 + y11 − λGy01

f21 − g21

f22 − g22

gT
2x0 − fT

2x1 + y12 − λGy02

λG − 1


There are seven constraints left on the two parameters, however the last

one is actually a constraint on λ and refers to the fact that a total of nine
parameters are used for a model with eight degrees of freedom.3 In fact this is
a redundancy of four. As a comparison, using triangle decomposition on two
a�ne feature correspondences as proposed in the previous section, one would
end up with six points and thus 12 constraints on the eight entries of H. Now
however, the triangle corners can be imagined as being in�nitesimally close
to the center so that the triangle collapses to a point. In both cases two
a�ne features provide a redundancy of four constraints. With perfect noise-
free data these constraints are linearly dependent because they must agree
on the true solution. With noisy data however, these additional constraints
can help �nding a good solution, e.g. using least squares techniques.

As can be seen in equation (5.20) the matrix on the left hand side basically
contains the distances between the two features in the same image, and
the condition number of the least squares equation system approximately
scales quadratically with the coordinate scale. Therefore, from empirical
evaluation, it was found that the condition number is improved when the
coordinates in both images are normalized (i.e. scaled) so that the distance
of the features is about 1/

√
2.

5.1.3 Generalizing to n Correspondences

As can be seen, each of the two LAF correspondences determines only six
of the eight degrees of freedom; therefore the set of possible solutions is a
2-dimensional manifold in the space of all possible homographies. Using both
correspondences, the intersection of these manifolds determines the �nal so-
lution. In the same way as described above, also a third or n additional LAF
correspondences can be used to obtain a direct, non-iterative solution. This is
the same principle as in DLT, where each point correspondence provides two

3When a homography is estimated using the DLT algorithm[Hartley and Zisserman,
2004] also nine parameters are estimated and for perfect data this results in a one-
dimensional solution space. Usually, the solution with Frobenius norm 1 is picked then.
This "rule" can be regarded as another constraint to obtain a unique solution.
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constraints and determines a 7-dimensional subspace in the 9-dimensional
space of all homographies. The intersection of four of these 7-dimensional
subspaces yields (in the general case) the one-dimensional solution space,
where in DLT the solution with norm 1 is picked (but all solutions are equiv-
alent). The drawback of DLT and also the least squares-solution using many
LAF correspondences is that they optimize unintuitive algebraic criteria: in
presence of noise they do not necessarily guarantee an optimal average pro-
jection error or weight individual uncertainties of the correspondences. These
can however be considered in a subsequent maximum-likelihood estimation
step, which �nds the optimal solution regarding the measurements and their
uncertainties, given a good parameter guess and which is discussed in section
C.1.2.

5.1.4 Evaluation

In this section �rst the direct analytic solution (the raw version as well as
the one with normalized coordinates to improve conditioning) is compared
against the solution obtained through DLT based upon the triangle transform
of section 4.2.4 and the sensitivity of both methods to noise is inspected. Next
a closer look is taken at the sampling in the triangle transform before �nally
the estimation based upon multiple features is inspected.

For the �rst evaluation 100 general, regular homography matrices with
Frobenius norm one are generated (known ground truth data) as shown in
�gure 5.1. For each such homography two random positions (uniformly dis-
tributed in a virtual image of size 1024×1024) are chosen 100 times, the
ground truth LAF correspondence is computed and the LAFs are constructed.
These are then disturbed with normally distributed noise according to scaled
versions of the empiric covariance. Using this noisy correspondence data, the
homography is estimated by the analytic algorithm of the section 5.1.2. The
resulting homography is normalized by its Frobenius norm and di�erence to
the ground truth homography (again Frobenius norm) is plotted in �gure 5.2.
Also, the triangle decomposition is applied to the two LAF correspondences
and the resulting point correspondences are exploited in a DLT algorithm
[Hartley and Zisserman, 2004, pp.108] using pre-normalization of points ac-
cording to Hartley [1997b]. In the given setting this algorithm produced
the best results, followed by the normalized di�erential algorithm, while the
unnormalized (raw) algorithm performed worst.

In the next experiment the triangle transformation is evaluated for di�er-
ent triangle sizes and the resulting di�erence to the ground truth homography
is again measured as displayed in �gure 5.3. Here it can be seen that the
size of the triangle has to be chosen large enough not to disturb the machine
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Figure 5.1: Generation of ground truth LAF correspondences. Ground truth
general homographies have been constructed using the four corners of a vir-
tual 1024×1024 image, being mapped somewhere into another image of the
same size (2D uniform distribution). The transformation of the four image
corners then de�nes a ground truth homography. For each such homogra-
phy two random positions (uniformly distributed in the image) are chosen,
the ground truth LAF correspondence is computed and the LAFs are con-
structed.

precision, which happens for the DLT algorithm not until the order of 10−12.
On the other hand the triangle must be within a good linearity region, such
that the bias towards an a�ne transform induced by the triangle correspon-
dence does not dominate potential perspective e�ects of the true transform,
which happens here at the order of 103. If the triangle is signi�cantly smaller
than the position noise, the a�ne bias is also partially masked by the noise,
i.e. the noise dominates the estimation. The acceptable range is however
di�erent for di�erent applications and also depends on the structure of the
warp function and on the numerical operations performed with the triangle
corners.

The reason why the DLT works so well on such close points in presence
of so much noise is that the noise is not added independently to each of
the points but onto the LAF correspondence. This means that after adding
noise, the shape of the triangle has slightly changed, but it is unlikely that
the three corners are completely �ipped or confused. Using normalization
according to Hartley [1997b] makes the algorithm numerically stable, while
in the di�erential method there may still be potential for a numerically better
implementation, particularly because a cubic root is involved. However, it
can be seen that the version with normalized coordinates works much better
than the raw implementation.

The standard deviations being in the range of the estimated parameters
means that a certain fraction of cases existed, where the algorithms produced
a bad estimate. These might be because of close to degenerate ground truth
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Figure 5.2: Mapping Error for noisy LAF correspondences. For each ho-
mography 100 LAFs are constructed according to �gure 5.1, disturbed with
normally distributed noise according to scaled versions of the empiric covari-
ance and exploited to obtain an estimate of the homography a) using the raw
di�erential algorithm of the previous section, b) the normalized di�erential
algorithm and c) DLT in combination with the triangle transform. In the left
graph the mapping error in pixel averaged across the overlap region is com-
puted and in the right graph the Frobenius norm between the estimated and
the ground truth homography is plotted. Qualitatively both error measures
show that triangle transform in combination with DLT performs better than
the unnormalized di�erential approach. The performance of the normalized
approach is in between the other two. The error bars show only 1/3 stan-
dard deviation because the standard deviations are large compared to the
estimated parameters.
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Figure 5.3: When the triangle transform is exploited to sample the a�ne
feature into three point features the scale of the feature is important , because
it determines the distance of the samples to the center. Here this distance
is varied using the same input data as in �gure 5.3. The plots for 10−1 to
10−9 look pretty much the same as the plot for 1 and are not displayed here.
It can be seen that for linear homography estimation the sampling-ε for the
triangle transform does not have much in�uence as long as it is in the range
of 10−10 to 1 but the algorithm breaks outside this interval.

homographies, but the behavior can also be explained for the triangle de-
composition with a too large triangle (see cases without noise) and for the
di�erential formulation with numerical issues.

When multiple LAF correspondences are incorporated maximum likeli-
hood estimation can be performed where each of the features can be seen
as an (uncertain) observation. This is compared to sampling the features
followed by a standard DLT algorithm (see �gure 5.4). It is well known that
DLT minimizes only an algebraic error within the set of unit-norm homo-
graphies (compare [Torr and Fitzgibbon, 2003] for a similar problem in fun-
damental matrix estimation). Therefore it is not surprising that maximum-
likelihood estimation comes closer to the ground truth homography. Note
also that for all correspondences the same uncertainty has been used and that
the di�erences might get even larger when individually scaled and shaped un-
certainty would have been added.

5.2 Conjugate Rotation

The in�nite homography H∞ = K1RK−1
2 is an image-to-image transforma-

tion that relates points in one image with points in another image if the
camera has either only rotated or the corresponding 3D point is in�nitely
far away (compare section 2.3.5). It is a very important concept in self-
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Figure 5.4: Exploitation of Multiple Features. These �gures show curves for
di�erent noise levels. The remaining Frobenius norm between the estimated
and the ground truth homography is plotted vs. the number of LAF corre-
spondences exploited. The left graph shows DLT on triangle transformed
LAFs and the right plot shows maximum likelihood estimation. The max-
imum likelihood estimation is clearly better than DLT. In the left part of
the graphs nearly no redundancy exists, while in the right part the residual
approaches zero for high redundancy even for larger sigma.

calibration [Hartley, 1997a], projective geometry [Hartley and Zisserman,
2004], or when dealing with purely rotating cameras, e.g. with pan-tilt-units
[Capel and Zisserman, 1998], or for creating panoramic image mosaics [Brown
and Lowe, 2007]. In this section the case of constant intrinsic camera param-
eters is inspected, i.e. K1 = K2 is assumed. Then, algebraically a 3×3-matrix
H acting in the projective image space P2 is such an in�nite homography if
and only if it is proportional to a conjugate rotation, i.e. has the same eigen-
value structure as a scaled rotation matrix [Pollefeys and van Gool, 1999,
Hartley and Zisserman, 2004].

5.2.1 Previous Work

The dimension and structure of the set of conjugate rotations within the space
of all possible homographies has not been fully understood yet, so that, to
the best knowledge of the author, no algorithm for the direct computation of
general conjugate rotations existed prior to the one proposed in [Köser et al.,
2008]. A solution existed for the special case when nearly all intrinsics (skew,
aspect ratio, principal point) are known exactly [Brown et al., 2007]. In the
general case, researchers typically estimate general homographies (e.g. using
direct linear transformation [Hartley and Zisserman, 2004] on n ≥ 4 point
correspondences) and state that - in the presence of little noise - the esti-
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Figure 5.5: An a�ne correspondence in two images related by an in�nite
homography H∞: The linear transformation (e.g. shear, rotation, magni-
�cation) between the two magni�ed image regions approximates the local
derivative of the global image-to-image mapping H∞ in the center of the
window. Considering also the center shift, the resulting a�ne transforma-
tion can be thought of being tangent to H∞, which can be exploited for
estimation.
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mate should not be too far from a conjugate rotation [Hartley, 1994, Capel
and Zisserman, 1998]. Homography estimation approaches not using point
correspondences require e.g. the identi�cation of locally planar rectangle cor-
respondences [Kim and Kweon, 2006] or deal with conic correspondences
[Kannala et al., 2006], which typically lead to systems of quadratic equations
or require lots of matrix factorizations.

However, having obtained a general conjugate rotation, enforcing the
�conjugate rotation constraints� afterwards is not as straightforward as for
instance in the 8-point algorithm [Hartley and Zisserman, 2004] for the fun-
damental matrix because the eigenvalue decomposition of H∞ will in general
contain complex vectors. Simply projecting onto the allowed manifold has
not been possible because neither the dimension of this manifold has been
known nor a suitable minimal parameterization has been available.

In the next sections such a minimal parameterization for the conjugate
rotation will be proposed according to [Köser et al., 2008] and it will be shown
that the set of conjugate rotations is a 7-dimensional manifold in the space
of all 3×3-matrices R9, followed by an algorithm to estimate a conjugate
rotation based upon a single LAF correspondence, which provides already
six constraints. The last degree of freedom can be obtained by using another
point correspondence or it can be �xed by using the additional assumption
of zero skew and square pixels as described in [Köser et al., 2008]. This is
in contrast to the algorithm presented in [Brown et al., 2007], which also re-
quires the principal point to be known exactly, which is not always available.
Finally, in section 5.2.4 the algorithm is evaluated and results in panoramic
mosaicking with real images are shown.

5.2.2 A Minimal Parameterization

In this section a minimal parameterization will be derived for the conjugate
rotation. Despite being a very important concept in multi view geometry, the
number of degrees of freedom has not been investigated yet. Neither exists a
parameterization with less than the eight parameters (as the naive parame-
terization with �ve intrinsic parameters and three rotation parameters). Such
an over-parameterization can cause trouble in optimization, e.g. degenerate
covariance matrices in maximum-likelihood estimation. Some authors have
simpli�ed K for the conjugate rotation to pure diagonal shape with zero skew,
known aspect ratio and principal point [Brown et al., 2007]. Consequently,
in this simpli�ed model only a subset of all possible conjugate rotations is
allowed. Instead, here a minimal parameterization for general conjugate ro-
tations is proposed and estimation is discussed in the next section. A 2D
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homography mapping

x′ ' Hx =

 hT
1

hT
2

d

hT
3 1

x (5.21)

is expressed in Euclidean coordinates as

x′ =

(
hT

1

hT
2

)
x+ d

hT
3x+ 1

(5.22)

Its derivative is

A =

(
a11 a12

a21 a22

)
=
∂x′

∂x
= (5.23)

(hT
3x+ 1)

(
hT

1

hT
2

)
−
(
hT

1

hT
2

)
xhT

3 − dhT
3

(hT
3x+ 1)2

Without loss of generality the coordinate systems of both images are now
moved by an o�set −x, such that x = (0, 0)T, then this simpli�es to

A =

(
hT

1

hT
2

)
− dhT

3 (5.24)

Solving this for h3 and using d = x′ − x, the homography given x′ and
A is therefore

H =

(
A + (x′ − x)hT

3 x′ − x
hT

3 1

)
(5.25)

=

(
I2×2 x′ − x
0T

2 1

)(
A 02

hT
3 1

)
(5.26)

So far, H may be any homography4 and no special conjugate rotation
assumptions have been made. Now it is assumed that H is proportional to
a conjugate rotation, i.e.

H = λKRK−1 λ 6= 0 (5.27)

4Due to the assumption H33 = 1 the origin (or the feature position) is mapped to a
�nite position. If this is not true for the given x, then another x̃ must be chosen that
maps to a �nite position.
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where R is the relative camera rotation and K is the camera calibration
matrix holding focal length f , aspect ratio a, skew s and principal point
(cx, cy)

T:

K =

 f s cx
0 a f cy
0 0 1

 (5.28)

From the orthogonality of the rotation matrix R follows that its eigen-
values and therefore also the eigenvalues of 1

λ
H are {1, eiφ, e−iφ}. Exploiting

that all eigenvalues have the same absolute value, Pollefeys et al. derived
a fourth order polynomial constraint for self-calibration, called the modulus
constraint [Pollefeys and van Gool, 1999], which is a necessary condition for a
conjugate rotation. In contrast to this, the above parameterization now leads
to a linear relation between h31 and h32 involving also the other parameters,
and it is shown that this is a su�cient condition for conjugate rotations. The
eigenvalues of 1

λ
H are the roots of the characteristic polynomial:

det

[
1

λ
H− τI3

]
= α(τ − 1)(τ − eiφ)(τ − e−iφ) (5.29)

Multiplying out both sides yields a 3rd order polynomial in τ on both sides
of the equation

c3τ
3 + c2τ

2 + c1τ + c0 = (5.30)

ατ 3 − α(eiφ + e−iφ + 1)τ 2 + α(eiφ + e−iφ + 1)τ − α,
where the coe�cients ci depend on H and λ and φ is the rotation angle
of the conjugate rotation. Since di�erent order monomials are orthogonal,
corresponding coe�cients must be equal for the two polynomials to become
equal.

c3 = α (5.31)

c2 = −α(eiφ + e−iφ + 1) (5.32)

c1 = α(eiφ + e−iφ + 1) (5.33)

c0 = −α (5.34)

By comparison of the polynomial coe�cients the unknowns α and φ are
eliminated and two constraints are obtained, which are equivalent to

λ3 = det [A] (5.35)

λtrace [H] =
1

2
((trace [H])2 − trace

[
H2
]
) (5.36)

Observe that equation (5.35) eliminates the scale factor λ from subsequent
computations and that all homographies ful�lling these constraints must be
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conjugate rotations because they have the same eigenvalues as a rotation ma-
trix as long as λ is not zero. Now insert equation (5.25) into those constraints
and obtain the condition(

(λ− trace [A])(x′ − x)T + (x′ − x)T
A

T
)
h3 (5.37)

= −1

2
(trace [A])2 − trace [A] +

1

2
trace

[
A

2
]

+ λ (trace [A] + 1)

which is linear in h3 and can be written more compactly as

mTh3 = b mT = (m1m2) (5.38)

where mT is the row vector and b is the scalar value computed from A and
(x′ − x) of equation (5.37).

From a geometrical point of view, the equation above makes sure that the
�xpoint of the conjugate rotation is compatible with the local o�set and the
local linear warp. The �xpoint of the conjugate rotation is the eigenvector
corresponding to the eigenvalue 1, and geometrically this is the intersection
of the rotation axis with the image plane. Particularly, when x is already
a �xpoint of H, i.e. when the last column5 of H is (0, 0, 1)T, then the left
hand side of equation (5.37) vanishes: Only A must be chosen appropriately
in that case and all selections of h3 lead to valid conjugate rotations.

Parameterizing the Conjugate Rotation

The constraint of equation (5.37) does not explicitly express one of the eight
parameters in terms of the other seven. Instead, it rather imposes an implicit
constraint that all parameters must ful�ll. Therefore, it is not straightforward
to replace one parameter by the other ones. Given A and (x′ − x) however,
the constraint is linear in h3, and one possible parameterization is to solve
for h31. This is only possible if m1 is not zero, which happens when x is a
�xpoint so that (x′ − x) vanishes. This case is however easily detected and
avoided if some other, displaced, point is used. As a drawback, this has the
e�ect, that the identity transform, a very special kind of conjugate rotation,
cannot be parameterized using this 7-parameter model, since all points are
�xpoints under the identity transform and h31 cannot be determined from the
other parameters. In the general case however, when m1 6= 0, the consistent
value for h31 can be obtained

h31 =
m2

m1

h32 − b (5.39)

5The last column of a homography matrix is the image of the origin because the product
of the matrix with (0, 0, 1)T simply yields the last column of the matrix.
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Consequently, given a non-�xpoint a�ne correspondence there is a family
of homographies, which depends on the six parameters of this correspondence
and one parameter of the equation above.6 In other words, the 3× 3 matrix
H depends on seven parameters

p = (a11, a12, a21, a22, d1, d2, h32)T (5.40)

now. By construction, H must be a conjugate rotation and the manifold for
conjugate rotations can have at most seven dimensions, since it depends on
seven parameters only.

To prove that H has at least seven degrees of freedom, it is su�cient to
show that the tangential space of vec [H] as a function of p is 7-dimensional
at some position [Gray, 1994]. Intuitively, this means that for a given set
of parameters, if it is possible to run into seven orthogonal directions on
the manifold of conjugate rotations when changing the parameters, then the
manifold has at least seven dimensions.

This can be best analyzed for a simple conjugate rotation, however, care
has to be taken that the constraint of equation (5.37) is ful�lled even if the
parameters are varied. This is obviously the case for the parameter set

pz = (0, 1,−1, 0, 1, 1, 0)T (5.41)

because any of the above entries can be changed in a small interval around
pz and still a h31 can be found such that equation (5.37) is ful�lled. This
holds, because it is a linear equation in h31. In appendix D.1 it is shown that

rank

[
∂vec [H]

∂p

∣∣∣∣
pz

]
= 7 (5.42)

holds. Consequently, a conjugate rotation has 7 DOF.
This may be surprising at �rst sight, since knowing the eigenvalue struc-

ture seems to be more information than a single constraint. Note however,
that the rotation angle φ is unknown and one therefore only knows the abso-
lute value of the second and the third eigenvalue. Also, since the character-
istic polynomial is holomorphic (as all polynomials), complex conjugates of

6Since λ 6= 0 has been assumed, equation (5.35) requires a non-zero determinant of A:
Within the space of all possible selections for aij this set is not allowed. When the param-
eterization starts from a LAF correspondence, det [A] = 0 is already guaranteed because
such a correspondence cannot be measured since one of the features would have no area
(e.g. a feature on the optical axis for a horizontal camera rotation of 90◦). Also in practi-
cal optimization techniques like Levenberg-Marquardt these parameter con�gurations can
easily be avoided because they form a null set.
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any root must also be a root and �nally, in projective space a homography
is equivalent to a scaled version, so one basically ends up with the constraint
�All eigenvalues have the same absolute value� (compare [Pollefeys and van
Gool, 1999]). In the next section it is shown how the conjugate rotation with
its seven degrees of freedom can be estimated based upon a LAF correspon-
dence, which already provides six constraints.

5.2.3 Estimation

In the previous section a homography of the form

H(h32) =

(
I2×2 x′ − x
0T

2 1

)(
A 02

hT
3 1

)
(5.43)

has been derived, which, given an a�ne feature correspondence, depends only
on one parameter h32. Basically this means that the a�ne transform locally
�xes the conjugate rotation, but the pre-image of the line at in�nity h3 still
depends on one unknown parameter: It is unclear, what maps to in�nity yet.

In order to determine this remaining parameter one additional constraint
is required. This may be obtained from another point or line correspondence
or from a constraint on the intrinsic camera parameters.

Additional Point or Line Correspondence

If an additional image point correspondence (y,y′) is given, it must ful�ll
the homography mapping (using the parameterization from equation (5.43))(

y′ − x
1

)
' H

(
y − x

1

)
(5.44)

=

(
I2×2 x′ − x
0T

2 1

)(
A 02

hT
3 1

)(
y − x

1

)
The displacement matrix is transferred to the left hand side so that the

cross product of the left hand side and the right hand side must be zero[
y′ − x′

1

]
×

(
02×2

(y − x)T

)
h3 (5.45)

= −
[
y′ − x′

1

]
×

(
A(y − x)

1

)
Selecting one of the �rst two rows yields a linear equation in h3, which
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in general7 determines the last remaining degree of freedom and therefore
the conjugate rotation without any restrictions on skew, aspect ratio, focal
length or principal point. Alternatively, another line correspondence might
be used, e.g. if the horizon can be found in both images. Lines are dual to
points and backward-map with a transposed H, so basically the same linear
algebra applies as in the point correspondence case.

Self calibration is now possible with the approach of Hartley [Hartley,
1994]. Note however, that in contrast to the homography estimation method
used in [Hartley, 1994], here the estimated homography will be a perfect
conjugate rotation.

If on the other hand some intrinsics of the used camera are known before-
hand, no additional correspondence is required for estimation of the in�nite
homography as will be shown next.

Constraints on the Intrinsics

If only a single a�ne feature correspondence is given, the remaining unknown
h32 may be computed using constraints on the intrinsic camera parameters.
Zero skew and unit aspect ratio are reasonable assumptions for most con-
sumer cameras on the market, so that these constraints are exploited in the
following. The only other algorithm to estimate a conjugate rotation [Brown
et al., 2007] additionally requires the exact principal point position (see �gure
5.6 for the sensitivity of [Brown et al., 2007] to principal point deviations).
Since often the principal point is only roughly known, e.g. close to the image
center, our algorithm does not assume anything about the principal point.
Instead, in order to compute the remaining parameter, a quadratic constraint
for h32 can be obtained by assuming zero skew and known aspect ratio as
derived in [Köser et al., 2008].

Optimization of the Conjugate Rotation

Given a good start value, it is easy in the presented formulation to optimize
the conjugate rotation, given multiple measured LAF correspondences and
their uncertainties. The decomposition of the homography into the parame-
ters is straight-forward and can be done by means of coe�cient comparison
in the matrix of equation (5.25), e.g. by �rst computing hT

3 and x′ − x and
then A. Then, exploiting the minimal parameterization, standard Gauss-
Newton methods can be applied to obtain a maximum likelihood estimate

7In the case that the point is on the line between the �xpoint and the a�ne feature,
equations (5.37) and (5.45) will not be linearly independent. In this case a di�erent point
must be used.
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Figure 5.6: Synthetic evaluation of the sensitivity of the 2-point-algorithm
[Brown et al., 2007] to principal point position (10.000 point pairs on a 50◦

�eld of view camera with width 1024 pixels), where the principal point is
shifted several degrees away from the assumed position (the image center).
The solid red curve shows the robust average error as evaluated by Brown et
al. [Brown et al., 2007], while the dotted green curve shows the fraction of
cases in which the algorithm did not come up with a solution at all. Already
at 3◦ (5% image width) principal point error, the average error is above six
pixels. Note that this is not a numerical or an implementation issue but
caused by the resulting rays when the principal point varies.
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Figure 5.7: Qualitative distribution of homography mapping error (length of
error vector) in a sample image, black means low error while white means
large error. Left: The homography mapping error is low near the a�ne
feature and increases outwards (result from extrapolation). Center: In the
2-point algorithm the error can have two local minima near the two feature
positions. Right: Error for DLT on four point correspondences. σ was 0.5
pixels and principal point distortion for 2-point was 1 degree.

of the parameters according to section 4.4.4. Care must however be taken
not to run into the case, where det [A] = 0, since this is no valid conjugate
rotation. However, this is a null set in the parameter space and can easily
be avoided in Gauss-Newton methods by taking a smaller step.

5.2.4 Evaluation

So far it has been shown that a conjugate rotation has seven degrees of
freedom. Ways to estimate it from as few data as possible were derived,
which is interesting e.g. for RANSAC-like algorithms [Fischler and Bolles,
1981] or in scenarios where user initialization or interaction is required. In
RANSAC-like algorithms the performance can decrease exponentially with
the number of correspondences needed to estimate a solution (see also [Chum
et al., 2003]). Traditionally, to obtain a conjugate rotation four point corre-
spondences were required (general homography estimation using DLT), while
recently a method has been proposed [Brown et al., 2007] to obtain a very
special conjugate rotations based upon two feature correspondences (Brown
et al. [2007] used only the position of SIFT[Lowe, 2004] features). The new
method pushes this concept to the extreme so that only one LAF corre-
spondence is required, while the principal point can vary freely. However, it
is clear that in such a situation, where one local measurement determines a
global transformation, small disturbances of the measurement can have severe
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Figure 5.8: Conjugate rotation estimation from only one correspondence in
each image pair. The �rst image is warped to the second and vice versa using
the estimated homography.
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Figure 5.9: Sensitivity of the a�ne and the local 2-point algorithm against
noise of the a�ne correspondence. The derivative is disturbed with 1% of the
position uncertainty, which approximately evolves from the assumption that
the corners of a patch for gradient-based minimization are found with the
same uncertainty as the patch center. The images are of size 640×480 with
50◦ FOV and related by random rotations. The principal point prediction
for the 2-point algorithm is disturbed with Gaussian noise of 1◦ (lower green
curve) and 10◦ (upper red curve), which simulates that the principal point is
only close to the image center for real cameras.

e�ects on the extrapolated transformation. Figure 5.7 qualitatively shows for
an example that the error is small at the correspondence and slowly grows in
the vicinity while it becomes larger far away from the feature. This suggests
the application of a growing strategy, which �rst incorporates nearby cor-
respondences for estimation of the global homography before iterating and
increasing the neighborhood radius. In the two-point algorithm [Brown et al.,
2007] there are two local minima because both features are forced to �t well.

To evaluate the sensitivity of the presented algorithm with respect to
noise, the quality measure proposed in [Brown et al., 2007] has been used,
where the average reprojection error across the overlap image region is mea-
sured and clipped at 10 pixels to ensure robustness against gross errors in
the homography estimation. Figure 5.9 shows this quality measure plotted
against the standard deviation of the noise on synthetic data. The proposed
method is compared to the two point algorithm [Brown et al., 2007] for
di�erent principal point distributions. For a fair comparison the two corre-
spondences are generated by obtaining two points of distance two pixels from
each a�ne feature as described in [Riggi et al., 2006] (called local two-point
algorithm in the following).
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Figure 5.10: Quality of least-squares optimized conjugate rotation plotted
against the number of correspondences used. The three curves represent
three di�erent standard deviations of the position noise, where again 1%
Gaussian noise was added to the homography's derivative. The setting is the
same as in �gure 5.9.

In this evaluation it can be observed that the algorithm requires a good
LAF correspondence. It is particularly sensitive to errors in the estimate of
the homography's derivative. The error of the local two-point algorithm on
the other hand is dominated by the principal point distortion. However, if
many correspondences are available the minimal parameterization allows for
a simple nonlinear least squares maximum likelihood optimization of conju-
gate rotations given a�ne feature correspondences. Figure 5.10 shows the
reprojection error plotted against the number of correspondences for di�er-
ent noise levels. The reprojection error decreases signi�cantly if more a�ne
feature correspondences are used.

Finally, results on real images taken with di�erent cameras as depicted
in �gure 5.8 are presented. From only one local correspondence a conjugate
rotation was estimated using the proposed algorithm under the assumption
of zero skew and square pixels. The images were stitched together and the
results are shown in �gure 5.8. Although not being subpixel correct, par-
ticularly in regions far away from the correspondence, the results look quite
appealing given the minimalistic data they are based upon.

5.2.5 Discussion

It has been shown that a general conjugate rotation has seven degrees of free-
dom allowing for a minimal parameterization. This parameterization arises
from the insight that an a�ne feature correspondence provides a �rst order
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Taylor approximation to the image transformation, allowing for a di�eren-
tial constraint onto the homography. Another result is the �rst algorithm to
compute a general conjugate rotation from a di�erential and a point or line
correspondence and an algorithm for estimating a conjugate rotation from a
single a�ne feature correspondence under the assumption of zero skew and
known aspect ratio involving nothing more expensive than the solution of
a quadratic equation. Also, the latter method does not require the princi-
pal point to be exactly at the image center, a crucial assumption to which
previous methods are sensitive to, but which might not exactly be ful�lled
in real cameras. For such real images it has �nally been demonstrated that
panoramic stitching is possible using only a single feature correspondence.

5.3 Triangulation and Normal Estimation

Given two calibrated cameras (assuming K = I3×3) at di�erent positions, ob-
serving a LAF correspondence, the 3D feature position (triangulation) and
orientation (normal estimation) of the local plane is now derived. This allows
for instance to use LAF correspondences to be integrated into an extended
bundle adjustment[Triggs et al., 2000] also incorporating local surface orien-
tations where often only the 3D positions are used.

5.3.1 Previous Work

Several algorithms exist to triangulate the 3D point from a 2D-2D point corre-
spondence in two calibrated images [Hartley and Zisserman, 2004, Kanatani,
2005]. If multiple 3D points exist, e.g. from range data[Murray and Little,
2004], from photometric stereo [Murray, 2003] or from time-of-�ight based
cameras [Beder et al., 2007b], a local surface normal can be estimated by
means of plane �tting. Such local planar patches are also called patchlets
and may, given a good initial value, non-linearly be optimized based. Such
an optimization can exploit the grey values of two images [Hattori and Maki,
1998, Molton et al., 2004, Pietzsch and Grossmann, 2005] or (fused) modali-
ties from other sensors [Beder et al., 2007a]. Beder et al. [Beder et al., 2007b]
obtained that the achievable accuracy in normal estimation is comparable for
time-of-�ight (ToF) cameras (e.g. photonic mixer devices [Xu et al., 1998])
and photometric stereo cameras, while they stated that ToF is better in
obtaining the 3D position.

For purely vision-based systems that use one conic correspondence, there
exist two solutions for the space conic if it is assumed that the two conics are
projections of a planar conic in space [Ma, 1993]. For correspondences from
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Figure 5.11: Two Cameras Observing a Textured Surface. This �gure shows
two cameras observing an a�ne feature (marked with an ellipse). The
stretched versions of the feature in an orthophoto texture and in the two
camera views are displayed in the top. Without knowledge about the scene,
the position and the normal of the local feature can be obtained using the
LAF correspondence .
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a�ne features in videos with lots of images, Davison et al.[Davison et al.,
2007, Molton et al., 2004] heuristically initialized the planar patch normal
with the viewing ray of the �rst image and Jin et al.[Jin et al., 2003] initialize
it with the optical axis of the �rst camera. Afterwards, both approaches
update the normal in an iterative approach when new observations arrive,
where [Molton et al., 2004] uses a SLAM (EKF) approach based upon a�ne
feature correspondences while [Jin et al., 2003] exploits a generative model
and works directly on the grey values. In contrast to these two �ltering
approaches, in the following it is derived how the point and the local surface
normal can directly be obtained from a single LAF correspondence in just
two images using only linear algebra.

5.3.2 Patchlet Estimation

Without loss of generality, the �rst camera is assumed to have the canonic
pose (see equation (2.17)):

PI1 = (I3×3 |03) (5.46)

and the second being at C with orientation R2

PI2 = (RT
I2 | − RT

I2C) (5.47)

Let the LAF correspondence be AI1
x at xI1 in the �rst image and AI2

x at
xI2 in the second image and let the local Jacobian (the concatenated warp
according to equation (4.15)) be A. From the point correspondence, the 3D
position xW of the correspondence can be estimated, e.g. by DLT[Hartley
and Zisserman, 2004]: [

xI1
]
×PI1x

W = 03 (5.48)[
xI2
]
×PI2x

W = 03 (5.49)

In general this homogeneous system of six equations in the four entries of
xW has a one-dimensional null-space (since wW ∈ P3), which can be esti-
mated using SVD. In the presence of noise, the point triangulation problem
can also be solved optimally in 3D space [Kanatani, 2005] or for projective
reconstructions[Hartley and Zisserman, 2004].

The �rst camera is now virtually rotated around its center, so that the
feature is moved onto the optical axis (according to the Rodrigues formula
2.15):

R1 = R3D

[
xI1

‖ xI1 ‖
× (0 0 1)T, cos−1

[
(0 0 1)T xI1

‖ xI1 ‖

]]
(5.50)
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Actually, this rotation is a homography transformation with respect to the
image content and also a�ects the local a�ne frame. According to equation
(4.19) by application of this homography, its linearization R1,Taylor virtually
changes the LAF in the �rst image to

ÂI1
x = R1,TaylorA

I1
x , (5.51)

i.e. now 02 in the transformed �rst image corresponds to xI2 in the second,
while the rotation-corrected Jacobian Ar is now

Ar =
∂R1
∂x

∣∣∣∣
xI1

A (5.52)

Now the original problem has been transformed into a problem, where
the feature is on the optical axis of one of the cameras. In the coordinate
system of the changed �rst camera the projection matrices look like this

P̂1 = (I3×3 |03) (5.53)

and
P̂2 = (RT

2R1 | − RT
2R1C) = (RT|t) (5.54)

The patchlet normal, which is sought, is the normal of the local tangent
plane to the 3D surface. The homography Hπ between the two images in-
duced by this tangent plane π at s in space with normal n is (cf. to [Molton
et al., 2004]):

Hπ =
(
sTn R

T − tnT
)

(5.55)

where s = (0, 0, λ)T.
In this representation only the surface normal n is unknown. Please

observe that a scaled version of n leads to the same homography. The normal
n ∈ R3 has actually only two DOF and can be parameterized e.g. using two
sphere angles. To obtain linear constraints, here it is now argued that for
the feature to be visible in the �rst camera its surface normal must face - at
least to some degree - towards the �rst camera and therefore have a negative
z-component in the �rst camera's coordinate system. It is therefore set to
−1 in the following, which is projectively equivalent to any other non-zero
value,

n =

 n1

n2

−1

 (5.56)

so that only two parameters are left for the normal. The plane π has the
following representation (according to equation (2.9)):

π = (n1 n2 −1 ‖n‖λ)T (5.57)
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Hπ =
(
−λRT − t(n1 n2 −1)

)
(5.58)

This homography is now regarded as a mapping from R2 to R2:

Hπ [02] = xI2 with
∂Hπ
∂x

∣∣∣∣
02

=
∂R1
∂x

∣∣∣∣
xI1

A︸ ︷︷ ︸
=Ar

(5.59)

where Ar is the rotation-corrected warp already used in 5.51:

Ar =

(
a11 a12

a21 a22

)
(5.60)

For convenience, the entries of the matrix are stacked into a vector (cf. to
[Fusiello, 2007]):

vec

 ∂Hπ
∂x

∣∣∣∣
02

 = (5.61)

λ

(t3 − λr33)2


r33(λr11 + t1n1)− t3(r31n1 + r11) + r13(t1 − λr31)
r33(λr21 + t1n2)− t3(r31n2 + r21) + r23(t1 − λr31)
r33(λr12 + t2n1)− t3(r32n1 + r12) + r13(t2 − λr32)
r33(λr22 + t2n2)− t3(r32n2 + r22) + r23(t2 − λr32)


The Jacobian is only de�ned if the point is not mapped to in�nity, i.e. if

P̂2(0 0 λ 1)T has a nonzero third component (−λr33 + t3). However, since
the point is seen in the other image, �nite coordinates are guaranteed and if
the Jacobian is measured from feature correspondences, its full rank can also
be assumed.8 In any case, the entries of Ar can be obtained from the LAF
correspondence and the camera poses and can now be exploited to reason
about the normal.

vec [Ar]
(t3 − λr33)2

λ
=

(t3 − λr33)2

λ


a11

a12

a21

a22

 = (5.62)

8 In theory there are a few cases where the Jacobian does not have full rank, e.g. when
one of the cameras is on the 3D surface plane or when the surface normal is orthogonal
to the viewing ray of one of the cameras. However, a degenerate Jacobian between the
two local regions means that in one image the feature would degenerate at least to a line,
in which case it would not have been measured in practice. If there is a non-degenerate
local a�ne frames in each of the images, the concatenation must also be non-degenerate
and therefore the Jacobian must have full rank.
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n1(t1r33 − r31t3) + λr11r33 − r11t3 − λr31r13 + t1r13

n2(t1r33 − r31t3) + λr21r33 − r21t3 − λr31r23 + t1r23

n1(t2r33 − r32t3) + λr12r33 − r12t3 − λr32r13 + t2r13

n2(t2r33 − r32t3) + λr22r33 − r22t3 − λr32r23 + t2r23

 = (5.63)


n1(t1r33 − r31t3)
n2(t1r33 − r31t3)
n1(t2r33 − r32t3)
n2(t2r33 − r32t3)

+


λr11r33 − r11t3 − λr31r13 + t1r13

λr21r33 − r21t3 − λr31r23 + t1r23

λr12r33 − r12t3 − λr32r13 + t2r13

λr22r33 − r22t3 − λr32r23 + t2r23

 (5.64)

This provides now four linear equations in the unknown parameters n1 and
n2, since the (nonzero) λ and the entries rij of R are known. They can be
stacked into a linear equation system to estimate the unknown parts of the
normal: 

(t1r33 − r31t3) 0
0 (t1r33 − r31t3)

(t2r33 − r32t3) 0
0 (t2r33 − r32t3)

( n1

n2

)
= (5.65)

(t3 − λr33)2

λ
vec [Ar] +


−λr11r33 + r11t3 + λr31r13 − t1r13

−λr21r33 + r21t3 + λr31r23 − t1r23

−λr12r33 + r12t3 + λr32r13 − t2r13

−λr22r33 + r22t3 + λr32r23 − t2r23


As can be seen, there are cases where the left hand side matrix vanishes, so
that no constraints on n are imposed. To explain this case have a look at
the cross product of the epipole in the second camera t and the optical axis
of the �rst camera (where the feature lies):

t× r3 =

 t2r33 − r32t3
t3r31 − r33t1
t1r32 − r31t2

 (5.66)

If the two vectors are collinear the camera has moved towards the feature
and the above cross product is zero, in which case no constraints at all can
be obtained for the surface normal in equation (5.65). If the camera has
only moved in exact direction of the x-axis or the y-axis, two of the four con-
straints in equation (5.65) vanish, i.e. the system is no longer overdetermined.
Equation 5.65 is now rewritten as

Mn

(
n1

n2

)
= Bn (5.67)

and can be solved as (
n1

n2

)
= (MT

nMn)−1
M

T
nBn (5.68)
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The resulting normal vector (n1 n2 − 1)T has to be rotated by R1 to com-
pensate for the virtual rotation of the �rst camera onto the feature.

5.3.3 Maximum Likelihood Estimation

In the previous section a direct way of computing the normal from a LAF
correspondence has been shown using only linear algebra. In the presence
of noise this solution might not be optimal. However, if it provides an ini-
tial estimate for the surface normal with good accuracy it can be used to
initialize a subsequent maximum likelihood estimation, which incorporates
the individual uncertainties of the LAFs or the correspondence. Given the
5DOF for the patchlet, the local plane in space and therefore also the lo-
cal homography can be determined, which maps between the features in the
images. The linearization of the local homography should then equal the
LAF correspondence . For this, noise models are available as described in
section 4.4. The maximum likelihood estimation can thus be performed in
the Gauss-Markov-Model as described in [McGlone, 2004]. Since only 5DOF
are optimized there is redundancy even using a single correspondence.

5.3.4 Evaluation

The sensitivity of the patchlet estimation algorithm has been evaluated in
�gure 5.12 using synthetic ground truth data: the second camera as well as
the patchlet position has been varied freely, while the patchlet normal has
been set in a way that both cameras can see it well (see �gure 5.12 for details).
The projection of the patchlet center as well as the homography mapping
across the plane has been exploited to generate a virtual LAF correspondence,
which has been disturbed by scaled versions of the empiric covariance (scaled
between 0 and 1). This experiment was carried out for focal lengths 400
(simulating wide-angle) and 2000 (simulating "zoomed in" camera).

Since the 3D position depends only on the position of the feature, the
evaluation is restricted purely to the normal. The resulting normal error has
been measured against the ground truth surface normal. The solution was
then fed into a non-linear iterative maximum-likelihood estimator, whose
result is also plotted in the �gure. As already mentioned in the previous
sections it is also possible to sample the LAF correspondence into three
point correspondences, which can then each be triangulated and the triangle
normal can be calculated.

The �gures show that surface normal estimation is possible for moderate
amounts of noise and that maximum-likelihood estimation (MLE) is bet-
ter than optimizing an algebraic criterion, however the technique used for
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Figure 5.12: Patchlet Estimation in Presence of Correspondence Noise. In
this �gure a patchlet has been estimated based upon known ground truth
data, which has been disturbed with gaussian noise (scaled empiric covari-
ance) as plotted on the x-axis of the graphs. For the left �gure a focal length
of 400 has been used while for the right a focal length of 2000. In both cases
camera 1 was at the canonic pose, camera 2 was inside a cube of ±1 and look-
ing towards the hemisphere with positive z-coordinate. The patchlet center
was set into a box between [−2.5, 2.5] × [−2.5, 2.5] × [1, 5]. The patchlet's
normal has been set to the average of the optical axes ±0.2 in all three com-
ponents (all parameters from uniform distributions). Whenever the patchlet
was not in front of both cameras it was rejected. To estimate the position the
algorithm given by Kanatani [Kanatani, 2005] is used. It can be seen that in
the case of short focal length, the error is higher when the LAF correspon-
dence is disturbed. The algebraic exploitation of the LAF correspondence
is compared to sampling the a�ne feature into three points and then esti-
mating mean and normal, further it is compared to the maximum-likelihood
estimator.
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MLE is Newton-like non-linear optimization, requiring a start value near the
global optimum. Sampling the feature produced the worst results here. The
experiments have been executed with small and large focal length, such that
measuring the LAF correspondence inaccurately has di�erent consequences
on the resulting rays. As expected, errors are smaller with larger focal length
because the angles do not change much with noise. The high error at almost
no noise can be explained with numerical di�culties in spurious oblique nor-
mals, which would also explain the high standard deviations.

5.3.5 Discussion

This result must again be seen in relation to a conic correspondence in two
views, where the quadratic formulation of the projection allows at least two
interpretations [Ma, 1993]. Instead, for the LAF-based algebraic solution
only linear algebra was required yielding a unique solution. In the simula-
tions, the result of the direct (algebraic) algorithm was su�cient to initialize
maximum likelihood estimation, which improves the result even on a single
correspondence, since the observations are redundant because only 5DOF are
estimated.

5.4 Pose Estimation

Since the description of spatial resection from three points by Grunert [1841],
many people have worked on pose estimation or the so called P3P problem
[Finsterwalder and Scheufele, 1903, Thompson, 1966, Fischler and Bolles,
1981, Haralick et al., 1994, Gao et al., 2003, Zhang and Hu, 2006, 2005].
PnP stands for pose estimation from n points and is underconstrained for
n < 3 unless further information is incorporated. Here a variation of the
problem is solved, namely when only a single LAF of a known 3D space
surface with orthophoto texture can be found in an image. Additionally
to the traditionally used point correspondence, such an image-model rela-
tion provides a local linear texture warp between the image and the model.
This warp can be interpreted as the Jacobian of the perspectivity between
the image and the 3D surface's tangent plane and it is shown that this de-
termines the open degrees of freedom for the extended P1P problem to be
solved. The presented approach allows to estimate a camera pose based
upon only one image-model correspondence, which is particularly interest-
ing in robot localization [Se et al., 2005], initialization or recovery in camera
tracking [Davison et al., 2007, Williams et al., 2007] or determining the pose
of a detected object[Skrypnyk and Lowe, 2004]. In these applications, often
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Figure 5.13: Di�erential Spatial Resection exploiting the Perspectivity Con-
cept. This �gure shows an aerial camera observing a ground plane (left
image). If the internal camera calibration is removed, the two images are
related by a perspectivity. The projection of some point on the plane and
the linear transform of the surrounding region provide six constraints for the
six DOF for pose estimation. In the right part an MSER feature correspon-
dence between an orthophoto and the camera can be seen, providing an a�ne
texture transform.

SIFT[Lowe, 2004] or MSER[Matas et al., 2002] features are used nowadays,
which cover some image region ideally corresponding to a surface in the scene.
In [Davison et al., 2007] even the normal of such local surface regions is es-
timated and also [Se et al., 2005] performs stereo from the three cameras
on the robot. However, in all of the above cited approaches, the correspon-
dences are geometrically handled as point correspondences when it comes
to initialization or direct pose estimation, although they carry much more
information. Therefore, by now at least three of such robust feature corre-
spondences were required to directly estimate a camera or object pose. In
contrast, in this section it is demonstrated how one such image-model corre-
spondence is already su�cient to estimate the pose. The proposed primitive
can be seen as the limiting case where three 3D points of Grunert's solution
come in�nitesimally close, allowing for a di�erential spatial resection.

To improve the pose estimation result, gradient based optimization tech-
niques should be applied between the current view and a reference texture as
explained in section 4.2.5. The reference texture can either be an orthophoto
(cf. to [McGlone, 2004], p.758) or any other view with su�cient resolution
for which the warp to an orthophoto is incorporated. When all such feature
correspondences and the camera poses are optimized at once, this is similar
to the approach of Jin et al.[Jin et al., 2003]. However, their approach is for-
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mulated in a nonlinear fashion only and requires an initialization, comparable
to the requirements for bundle adjustment.

5.4.1 Perspectivity

The contribution is based on estimating a transformation between two theo-
retical planes: The �rst plane is tangent to a textured surface in 3D and the
second plane is orthogonal to the optical axis of a camera. The estimation
of the pose is then formulated as the problem of obtaining a perspectivity
between these two planes (see �gure 5.13).

A 2D perspectivity is a special kind of homography (cf. also to [Hartley
and Zisserman, 2004, p.34]), which has only six degrees of freedom and which
is particularly important for mappings between planes in Euclidean space (cf.
to section 2.3.3). Points on the z = 0 plane map into the camera as

pi = (RT| − RTC)ps,z=0 = (r1 r2 r3 − RTC)(x y 0 1)T (5.69)

= (r1 r2 − RTC)(x y 1)T ' (r̃1 r̃2 t)(x y 1)T = H pp (5.70)

r̃i are scaled versions of ri so that tz = 1 and ' means equality up to
scale. Obviously, the homography H maps points pp of the plane coordinate
system to points pi in the image coordinate system. H is a perspectivity
and depends only on six parameters, the pose of the camera. Since H is
an object of projective space, it can be scaled without changing the actual
transformation. While the perspectivity H acts linearly in projective space
P2, in Euclidean 2D space H is a nonlinear mapping from R2 → R2 because
of the nonlinear homogenization:

H
[
pp
]

= pi = euc [pi] =
(Hpp)|1..2
(Hpp)|3

(5.71)

In the next section the LAF correspondence concept of section 4 is brought
into context and it is shown how it can be exploited to obtain constraints on
H.

5.4.2 Previous Work

The solution of the spatial resection problem has been �rst mentioned in a
German book for teachers from 1841 [Grunert, 1841]. Since then several more
or less equivalent approaches in photogrammetry and computer vision have
been proposed (cf. to [Haralick et al., 1994] for a comparison) including one
in the RANSAC-article [Fischler and Bolles, 1981]. Basically, all approaches
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�rst compute the distances to the three 3D points from the rays in the cam-
era coordinate system. Then, using geometric reasoning on the distances
and angles, they derive up to four triangle constellations, which explain the
observations. In [Ma, 1993] Ma derived a way to determine the pose of a
camera from two conics. He noted that a conic has only �ve DOF and thus
a single conic is not su�cient to determine the six DOF of the camera pose
uniquely. A conic CS on the space plane of the previous section maps to a
conic CI in the image with the following equation:

Ci = HTCpH (5.72)

where H is the perspectivity of the previous sections and it can be seen that
this leads to quadratic equations in the entries of the perspectivity. Other
related work in homography estimation (e.g. [Zelnik-Manor and Irani, 2002,
Kähler and Denzler, 2007, Irani et al., 1997]) and projective reconstruction
[Rothganger et al., 2007] did not inspect the di�erential constraints on the
perspectivity, because they stay projective. Camera pose estimation can
however exploit the internal camera calibration and Euclidean 3D structure,
this way reducing ambiguities.

In the evaluation section, the novel method will be compared to the the
planar POSIT algorithm [Oberkampf et al., 1996], which requires four copla-
nar points and works in an iterative fashion. It already includes the parallel
projection approximation proposed by Kyle [2004], who on the other hand
requires 4 non-coplanar points. Basically, the last two algorithms require four
points instead of three to avoid the application of the non-linear constraints
from rotation parameterization. In contrast, these constraints are exploited
in the di�erential formulation now:

5.4.3 Pose Estimation from a LAF correspondence

Having obtained a LAF correspondence between a camera image and the
textured plane in the origin, the local warp equals the derivative of the per-
spectivity. This derivative ∂H/∂pp tells something about the relative scaling
of coordinates between the plane in the origin and the image, e.g. if C is large
and the camera is far away from the origin ∂H/∂pp will be small because a
large step on the origin plane will result in a small step in the image far
away. Actually, ∂H/∂pp carries information about rotation, scale and shear
through perspective e�ects.

Since H can be scaled arbitrarily without changing H, without loss of
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generality9 let H3,3 = 1 and compute the derivative at the origin:

∂H

∂pp

∣∣∣∣
0T

=

(
r̃11 − r̃13t1 r̃12 − r̃13t1
r̃21 − r̃23t2 r̃22 − r̃23t2

)
=

(
a11 a12

a21 a22

)
(5.73)

Also, it is inspected where the origin is projected in the image:

porigin = H(0 0 1)T = −RTC ' t (5.74)

Given a LAF correspondence, the derivative as well as the projection of the
origin are given by the relative parameters of the detected features. This
can determine all degrees of freedom of the camera pose, however the over-
parameterization of the rotation must be resolved: Since R̃ is a scaled rotation
matrix, r̃1 and r̃2 must be of same length and orthogonal:

r̃2
11 + r̃2

12 + r̃2
13 = r̃2

21 + r̃2
22 + r̃2

23 ∧ r̃T
1 r̃2 = 0 (5.75)

Now H can be computed by �rst substituting t into equation (5.73), then
solving for r̃11, r̃21, r̃12 and r̃22 and substituting into equation (5.75), leaving
two quadratic equations in the two unknowns r̃13 and r̃23:

(r̃13t1 +a11)2 +(r̃13t1 +a12)2 + r̃2
13 = (r̃23t2 +a21)2 +(r̃23t2 +a22)2 + r̃2

23 (5.76)

(r̃13t1 + a11)(r̃23t2 + a21) + (r̃13t1 + a12)(r̃23t2 + a22) + r̃13r̃23 = 0 (5.77)

The �rst equation is about the length and the second about the orthog-
onality of the r̃-vectors as typical for constraints on rotation matrices. It is
instructive to interpret them as the intersection problem of two planar conics,
the length conic Cl and the orthogonality conic Co:

(r̃13 r̃23 1)Cl(r̃13 r̃23 1)T = 0 (5.78)

(r̃13 r̃23 1)Co(r̃13 r̃23 1)T = 0 (5.79)

Cl =

 2t21 + 1 0 t1(a11 + a12)
0 −2t22 − 1 −t2(a21 + a22)

t1(a11 + a12) −t2(a21 + a22) a2
11 + a2

12 − a2
21 − a2

22

 (5.80)

Co =

 0 t1t2 + 1
2

(a21 + a22)t1
t1t2 + 1

2
0 (a11 + a12)t2

(a21 + a22)t1 (a11 + a12)t2 a11a21 + a12a22

 (5.81)

9This is not a restriction because the only unrepresented value H3,3 = 0 results in the
origin being mapped to the plane at in�nity and therefore such a feature cannot be seen
in the camera.
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Such a transformation of the problem is helpful because now methods from
conic theory can be used to see if (and how many) real solutions exist or
in which situation one might end up with an underconstrained problem (in-
�nitely many solutions). It is well known that in spatial resection from three
points there exists a surface called the danger cylinder [Finsterwalder and
Scheufele, 1903, Thompson, 1966, Zhang and Hu, 2006], where the problem
becomes unstable. In the given algorithm the camera pose is not observable
if it is possible to change the pose parameters in a certain direction such that
the LAF correspondence stays the same. Mathematically, this means that if
the six a�ne parameters are di�erentiated with respect to six pose parame-
ters, the Jacobian must have full rank, otherwise there might be a degenerate
case (pose cannot be determined) or an instable case (double root) [Gruen
and Huang, 2001, Thompson, 1966]. Full rank means non-zero determinant,
therefore the characteristic polynomial of the Jacobian, which is of 6th de-
gree, must not have any real root. To test for an unstable case, it is therefore
possible to check the determinant of the above Jacobian.

Solving for the pose parameters

Two conics cannot have more than four intersection points, therefore, one can
obtain at most four solutions for the camera pose. To solve the intersection
of the two conics the elegant method of Finsterwalder and Scheufele [1903] is
followed, which proved also to be the numerically most stable method of the
six di�erent 3-point algorithms for spatial resection [Haralick et al., 1994]:
Since a common solution of equations (5.78) and (5.79) must also ful�ll any
linear combination of both, one can construct a linear combination of both
conics, which does not have full rank (zero determinant), but which still
holds all solutions. This creates a third order polynomial, which has at least
one real root and can be solved easily (actually, this is a similar step as in
the 7-point algorithm [Hartley and Zisserman, 2004] for fundamental matrix
estimation):

det [λCo + (1− λ)Cl)] = 0 (5.82)

The resulting degenerate conic will in general consist of two lines. The in-
tersection of these lines with the original conics is only a quadratic equation
and determines the solutions. The resulting R and C have to be selected and
normalized in such a way that an orthonormal rotation matrix (determinant
+1) is obtained and the camera looks towards the plane. Now the pose of
the camera has been obtained in the object coordinate system (relative to
the feature at the z = 0 plane). If there is a world coordinate system, in
which the plane is not at the origin, the rigid world transformation has to be
appended to the computed pose of the camera. Computing the relative pose



5.4. POSE ESTIMATION 119

in the object coordinate system in general also improves conditioning since
the absolute numbers of the object's pose in the world become irrelevant.

5.4.4 Optimization, Tracking and Maximum Likelihood

Estimation

Once the parameters are roughly known it is straightforward to use a 6-
parametric gradient-based minimization technique (cf. to [Baker and Matthews,
2004, Lucas and Kanade, 1981, Köser and Koch, 2008b]) to optimize the
camera pose. Note that if a pinhole camera is used and the feature in 3D
is locally planar, instead of optimizing an approximate a�ne transform one
might as well use a 6-parametric homography. Thus measurements may be
incorporated from a larger region without making a mistake or an approxima-
tion. Even better, since it is possible to use global camera pose parameters,
it is easy to optimize even multiple rigidly coupled features (e.g. in a rigid
scene). Or, if robustness against outliers is a concern, each of the features
provides an individual pose estimate and robust estimation techniques such
as RANSAC[Fischler and Bolles, 1981] can be used to obtain a fused solution.
If video data is available, the parameters can directly be used for tracking
the regions, objects or camera pose over time similar to what is proposed in
[Jin et al., 2003].

In terms of the LAF correspondence as an uncertain observation, one
can �nd the most likely pose that led to this observation. Here, a solution
obtained from the previous section can serve as a start value. The pose
can then be parameterized as an o�set from the initial camera center and
three Euler angles for a slightly di�ering orientation. The Jacobian of the
homography and the position of the feature is then optimized so that the
Mahalanobis distance from the LAF correspondence is minimized as proposed
in section 4.4.4.

5.4.5 Evaluation

In this section the LAF correspondence-based pose estimation is evaluated
�rst using synthetic sensitivity experiments. Next, rendered images with
known ground truth information are used to evaluate the real-world appli-
cability, where everything has to be computed from image data. In the �nal
experiments, object pose estimation from one feature is show qualitatively
using non-ideal cameras.
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Sensitivity to Noise and Internal Calibration Errors

The evaluation of the algorithm starts with an analysis of the sensitivity
to di�erent disturbances. Since the algorithm provides a minimal solution,
which translates 6 DOF LAF correspondence into six DOF pose, the pose
will adapt to noise in the correspondence. In �gure (5.14) it is shown that
for localization accuracies better than 1 pixel in a camera with focal length
500 pixel the camera orientation is on average better than 1 degree and also
the direction of the camera center is better than 1 degree. The orientation
error is computed from the axis-angle representation of the rotation that
transforms the ground truth orientation into the estimated orientation and
therefore incorporates all directions. The center error is the angle between
the ground truth camera center and the estimated camera center as seen from
the 3D feature's position. For the evaluation, a scaled version of the empiric
covariance has been used according to section 4.4.2. It is remarkable that the
errors in orientation and position are highly correlated. This can be explained
from the fact that a slightly di�erent LAF correspondence results in a slightly
di�erent camera orientation. However, since the feature must be projected
to about the same position, the camera center has to adapt accordingly. As
�gure 5.14 shows, the pose estimation is stable even when the camera is
not calibrated correctly, although it can be seen that the resulting pose is
disturbed as inherent in minimal solutions. In particular it is clear that an
error in principal point results in an error in the pose when the reference
feature in 3D is correct. Keep in mind that at focal length 500 a principal
point error of ten pixel means that the optical axis is more than 1 degree
mis-calibrated.

Position and Orientation Errors of 3D Feature

The sensitivity to errors in the pose of the 3D feature is much more straight-
forward and need not to be sampled: Since the camera pose is computed in
the local coordinate system of the feature, an error of this coordinate system
in the world results in a concatenated error of the camera pose in the world.

Solid Angle, Approximation by Three Points and Comparison with
Spatial Resection/POSIT

Using the proposed approach, the a�ne warp must be measured between the
orthophoto and the image under inspection and this requires a region upon
which this is done. If the alignment is done using an a�ne warp, the region
should be chosen as small as possible, particularly when the feature is seen
from an oblique angle, because in the a�ne warp model it is assumed that
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Figure 5.14: Sensitivity Analysis with Respect to Noise and Calibration Er-
rors. In these experiments, noise has been added to the LAF correspondence
(top), assumed focal length (bottom left) and principal point (bottom right).
Each graph is made up from 105.000 pose estimations, for which the ground
truth data is generated with a simple perspective camera with focal length
500 pixels and principal point at (100;100) with random camera poses in front
of the feature. Printed are the 3D orientation error in degree and the angle
between the ground truth camera center and the estimated camera center for
the best of the up to four solutions. In a small fraction of cases no result can
be obtained or the best result is worse than �ve degrees. These cases are not
incorporated in the sensitivity analysis, but their occurrence can be seen in
the failure curves. In the top graph the 6-parametric LAF correspondence
is corrupted with additive Gaussian noise according to scaled versions of the
empiric covariance (see section 4.4.2. In the bottom left graph the assumed
focal length is disturbed by several percent as printed on the x-axis and in
the lower right graph the principal point is disturbed by the given number
of pixels (both zero mean Gaussian).
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Figure 5.15: Comparison of Spatial Resection, POSIT and the LAF-based
di�erential solution (DSR) for Small Solid Angle Patches. In this experiment
a camera with focal length 500 and principal point at 100;100 has been po-
sitioned randomly in front of the z=0 plane. The corners of a patch (half
window size from 10 to several hundred pixels) in the camera image have
been used to estimate the camera pose, where the novel di�erential spatial
resection solution is based upon the average a�ne transform of the four patch
corners from the plane into the image. Each of the corners has been disturbed
by additive Gaussian noise of σp =0.5 pixels. Due to di�erent distances and
di�erent patch sizes, the solid angle covered by the patch also varied and is
shown on the x-axis of the �gure, which gives the average orientation error
on the y-axis including 1/3 standard deviation. The solid angle has been
obtained using the method proposed in [Van Oosterom and Strackee, 1983].
The 3-point solution proposed in the Manual of Photogrammetry[McGlone,
2004, pp.786] (P3P), the planar POSIT algorithm [Oberkampf et al., 1996]
based on the four patch corners (which already includes the parallel projec-
tion approximation by [Kyle, 2004] in the POS step) are compared to the
new solution, where the a�ne transform is approximated also based on the
corners of the patch only. σp was �xed for the corners at 0.5. The error bars
show 1/3 standard deviation. As expected, it can be seen that for large solid
angle spatial resection performs best while for decreasing solid angles the
novel solution gets better and better, outperforming the other approaches
for very narrow constellations.
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the warp (the Jacobian of the homography) does not change between the
corners of the local patch.

On the other hand, when the three individual 3D points of Grunert's solu-
tion approach each other, the standard spatial resection can become unstable
because it is based on the di�erence of the distances to the three points.

To overcome this issue, Kyle [Kyle, 2004] proposed an approximate ini-
tial guess for narrow angle images, which is the same as the POS (Pose from
Orthography and Scaling) in the POSIT[DeMenthon and Davis, 1995] al-
gorithm: Both require four non-coplanar points. For the POSIT algorithm
however, there exists also a planar variant[Oberkampf et al., 1996], which
copes with planar 3D points.

Therefore the LAF-based algorithm (well-suited for small solid angles) is
compared to the spatial resection[Grunert, 1841, Haralick et al., 1994] im-
plemented as proposed in the Manual of Photogrammetry [McGlone, 2004,
pp. 786] Here, the size of a local square image patch is varied from ten to
several hundred pixels and use the corners as individual 2D-3D correspon-
dences in the existing algorithms. This is comparable to sampling the a�ne
feature using triangle decomposition. For the presented method the patch
corner points are used to compute a virtual local a�ne transform, which
approximates the required Jacobian. An evaluation of the quality of the ap-
proximation can be see in the bottom right of �g. 5.14, which shows that for
small solid angles the novel solution outperforms spatial resection, while for
large solid angles - as expected - the a�ne approximation is not suitable. It
is however still better in average than the orthographic approximation in the
planar POSIT algorithm. Particularly, when the solid angle approaches zero,
the error in the novel solution tends to zero, while for the other algorithms
no solution can be obtained or the best solution is worse than the robust
error threshold of 10◦.

Real Texture

In the next experiment, textured views from a ground plane have been ren-
dered and automatic matching and pose estimation has been applied. Since
the ground truth poses are available the pose error can be analyzed in this
case. The details of the experiment are explained in �g.5.16. Using auto-
matic matching in presence of di�erent intensity noise levels the pose can be
estimated quite reliably, given the minimal local texture data that is used.

In the �nal experiment photographs of an o�ce scene have been taken,
where a cereal box is detected, which is partially occluded. As in the previous
experiment, an MSER feature is selected in an orthophoto of the cereal box
(here the letter "`M"') and its descriptor is recorded.
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Figure 5.16: Camera Pose Estimation from Noisy Images. A ground plane
has been textured with an aerial image serving as an orthophoto and a series
of 40 views have been rendered with di�erent levels of noise (upper row:
sample views with low noise). A reference MSER feature with orientation
has been chosen in the orthophoto. This feature is then detected in the
other views and re�ned using a simple 6-parametric a�ne warp (see ellipses
in bottom left image) according to [Köser and Koch, 2008b] based upon a
half win size of 10 pixels. From such LAF correspondences, the camera
pose is estimated and compared against the known ground truth value as
explained earlier. Whenever the error was above 20◦ or the algorithm did
not come up with a solution a failure was recorded. The bottom right graph
shows the average pose errors in dependence of the added image noise. When
adding much more image noise, the MSER detector is no longer able to �nd
the feature the feature. This experiment is particularly interesting because
it shows that the concept does still work when the ellipse is not in�nitely
small.
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Figure 5.17: This �gure shows that in a real camera even with radial dis-
tortion (upper left images) or �sh-eye mapping (bottom images) object pose
estimation is possible from a single feature. The orthophoto of the object
is displayed in the upper right image with the local feature region enlarged.
The two upper left images show cluttered views with the object partially
occluded. In all views the �M� has been detected using MSER and re�ned,
and the appropriate of the two resulting object poses from this single LAF
correspondence is then displayed by augmenting a contour model. Only in
the center image two possible interpretations are displayed. In both the local
feature perfectly looks the same and the correct one can only be found by
incorporating more global knowledge.
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Then several test images are processed, where the cereal box appears. If
a good match for the sample feature can be found, the LAF parameters are
exploited to initialized gradient-based a�ne parameter optimization between
the orthophoto and the test image. Finally, from this LAF correspondence
the object pose is estimated. Since only the local region is used, the candi-
dates for the object pose can be found even if large portions of the object
are occluded. Figure 5.17 shows also two inferred object poses given a local
warps, which are both locally plausible. As can be seen, the system works
also well for �sheye cameras or cameras with other distortion.

5.4.6 Discussion

A LAF-based method for camera pose estimation has been presented, which
allows estimating the pose from a single image-model correspondence us-
ing nothing more expensive than the solution of a third order polynomial.
RANSAC-like approaches and applications where only few data is available
or that require manual interaction can bene�t from such a minimal solution.
Such correspondences are often readily available from photometric matching
or tracking but the information they carry has not been exploited in direct
pose estimation so far. The LAF-based algorithm showed quite stable results
in the sensitivity analysis and proved to be real-world applicable for camera
or object pose estimation.

5.5 Summary

In this chapter geometric estimation based upon local a�ne frame correspon-
dences has been demonstrated for several computer vision problems. First
it has been shown how the local warp imposes constraints in general ho-
mography estimation, how multiple features can be used to obtain a unique
solution and how maximum likelihood estimation can be performed based on
uncertain measurements. The same principles can be applied in estimation
of a conjugate rotation (e.g. the in�nite homography for constant camera in-
trinsics), where one of the most common cases has only six DOF and allows
to estimate it from a single LAF correspondence, even when the principal
point of the camera is unknown. Also the �rst feature-based approach to
estimate a general conjugate rotation and maximum-likelihood estimation
with multiple features has been shown. The LAF correspondence analysis
allowed also a minimal parameterization of the conjugate rotation with seven
parameters.

In another application, when a LAF correspondence is observed from two
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calibrated cameras at di�erent positions, a direct solution for the position
and surface normal in 3D space has been presented. Finding such a patchlet
in some other view, it has been shown that the camera pose can be estimated
up to a four-fold ambiguity from a single feature. This formulation is also
advantageous when the three 3D points of the classical resection form a very
small solid angle, i.e. when their 2D projections in the image are very close
to one another. Sampling a LAF correspondence into three individual points
on the other hand produces worse pose estimates for small features, but this
is application speci�c and depends on the parameters to be estimated: In
general homography estimation it yields better results, while it produced
comparable or slightly worse results in patchlet estimation.

In summary this chapter showed that the geometric LAF representation
can be exploited for several (and in fact for virtually all) steps in structure-
from-motion and other geometrical problems in a comparable fashion as
points are used nowadays. However, the LAF carries much more informa-
tion: Where a simple point correspondence allows for instance to triangulate
the 3D point, the LAF correspondence provides also the surface normal, and
where classical spatial resection requires three point correspondences, the
pose can be estimated already from a single LAF correspondence.
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Chapter 6

Free-form Surface Models:

Camera Tracking System

The previous chapters showed how the local 2D shape information carried in
features of 2D images can be exploited. In doing so, each local feature has
been considered individually and no topological connection, no occlusion and
no interpolation between the small features is in the model. They provide a
compact, sparse local 2D representation well-suited for geometric reasoning
as shown in the previous chapters.

Given detailed 3D surface geometry for larger, curved regions, in this
chapter now a scene representation for the purpose of camera tracking in
reconstructed scenes is discussed: textured free-form surfaces. Besides rep-
resenting also non-planar geometry of larger size and allowing for occlusion
reasoning, these textured free-form surfaces can also be processed very e�-
ciently by graphics processing units (GPUs), so that they are well-suited for
analysis-by-synthesis methods.

In the following, a complete system for markerless, drift-free camera track-
ing based upon such surfaces is presented. Such systems can serve as visual
pose sensors for various purposes in su�ciently static and textured environ-
ments. One particular application is the tracking of a camera for augmented
reality applications in TV-production or industrial environments [Lepetit and
Fua, 2005, Thomas et al., 1997, Koch et al., 2005]. Here, virtual 3D objects
from computer graphics appear �xed to the scene even if the camera moves
(see e.g. �gure 6.1).

For such an augmentation to become plausible and believable, the virtual
objects must not jitter or slide with respect to the scene, which requires ac-
curate tracking of the camera pose for every single image. Therefore tracking
has to be resistant to drift and the data used for tracking must be consistent
and reliable. Camera tracking or reconstruction systems like [Koch et al.,
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2007, Evers-Senne et al., 2006, Skrypnyk and Lowe, 2004] not using mark-
ers or any other kind of absolute reference show drift problems because the
unavoidable measurement uncertainty and noise accumulate over time. In
long tv shows this would degrade the augmentation, since the virtual objects
would slide away from their positions.

For o�ine time-uncritical systems (e.g. [Pollefeys et al., 2004]) this drift
can be compensated in a subsequent, global bundle adjustment step, which
minimizes errors in a whole image sequence at once[Triggs et al., 2000, Hart-
ley and Zisserman, 2004]. In interactive systems that require instant pose
information however, such post-processing is not possible and therefore drift
has to be avoided by other means. Concurrently with the work described here
also SLAM approaches have been proposed (e.g. [Davison et al., 2007]), which
basically run a simpli�ed bundle adjustment while the camera is tracked: Us-
ing Kalman �ltering techniques[Kalman, 1960], the state of 3D points and
camera poses is continuously updated, when new measurements arrive under
a statistical model. However, due to the limited state vector size for real-
time performance and linearizations of non-linearities this system is only an
approximation of a true bundle adjustment involving all data. Commercially
available solutions like the VIS tracker [Foxlin and Naimark, 2003] or BBC's
free-d system [Thomas et al., 1997] on the other hand use markers at pre-
de�ned positions for tracking and avoid drift in this way. As a drawback, the
free-d system for instance requires an expensively calibrated marker setup,
which makes its application outside of prepared studio environments di�cult.
Another issue arises from the design of perspective cameras. The smaller the
�eld of view, the more di�cult it becomes to distinguish between translation
and rotation, therefore wide angle or �sheye lenses are better suited for pose
estimation [Streckel and Koch, 2005, J. Neumann, 2002, Micusik and Pajdla,
2006]. Fish-eye cameras also have the advantage that they always �see� large
parts of the static scene even if objects or persons move and occlude parts of
the background or when the camera rotates.

Other, e.g. purely gradient-based object tracking approaches (e.g. [Koch,

Figure 6.1: A virtual car model inserted into a scene. When the camera is
tracked, virtual 3D models can be overlayed such as if they were in the scene.
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1993]) cannot cope with clutter and occlusion like moving objects or persons
within the scene. Purely interest point based systems tend to jitter, because
they apply fast 2D feature extraction methods to every single image (e.g.
SIFT in [Skrypnyk and Lowe, 2004] or Laplacian approximation in [Lepetit
et al., 2005]), which can su�er from few features or poor feature localiza-
tion and have to be regularized by temporal pose �ltering. An overview of
approaches can be found in [Lepetit and Fua, 2005].

To address the summarized issues, in the next sections a �sh-eye camera
tracking system, which relies on an automatically generated three-dimensional
reference model, is proposed. To obtain a model, the scene is explored o�ine
and recorded on video. That means that the tracking problem is split into
two phases: an o�ine phase where the model is generated and an online
phase where the camera is tracked in real-time. The real-time tracking is
using an analysis-by-synthesis approach. Herein the reference model is used
to generate an image using predicted camera parameters. The di�erence of
the generated image and the captured image is exploited for estimation of
the current pose parameters. For this approach, every part of the reference
model that has su�cient texture and depth information can be used.

In the �rst part it is summarized how such a model can be created solely
based upon image data as presented in [Bartczak et al., 2007]. In this o�ine
phase there is enough time to perform bundle adjustment and make the model
consistent. Then, when the system is used online, the camera is switched on
somewhere and has to be registered with the learnt scene (initialization).
When its position and orientation is known, it can be assumed that the
camera moves only slightly and will have a similar pose in the next image.
An approach to track the camera is then shown in the �nal section. Parts
of the approach presented here have already been published in [Köser et al.,
2007b,a, 2006a,b] and also the presented approach is part of a larger system,
which can be found in [Thomas et al., 2007, Chandaria et al., 2007] and
which has been demonstrated at the International Broadcasting Convention
in Amsterdam[Chandaria et al., 2006].

6.1 O�ine Modeling

First, a brief overview of the methods to construct a model for initialization
and tracking is given. A detailed presentation of the system can be found in
[Bartczak et al., 2007].

Although the applied mathematical model allows any camera with a sin-
gle center of projection, it is proposed to use spherical images, in particular
�sh-eye lenses with a very wide �eld of view because of their superior proper-
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ties for reconstruction[Streckel and Koch, 2005, J. Neumann, 2002, Micusik
and Pajdla, 2006]. In order to be usable in scenarios that cannot be manip-
ulated the reconstruction scheme must be �exible with respect to the extent
and shape of the scene. Previously presented systems [Cornelius et al., 2004,
Nistér, 2001, Pollefeys et al., 2004] achieve this �exibility by splitting the
reconstruction process into structure from motion, self-calibration and dense
reconstruction. In the proposed system, the self-calibration is replaced by
a preceding calibration step, which proved to be more robust and avoids
degeneracies. Small errors in the internal parameters can however be tol-
erated and these parameters can be included into optimization in a global
bundle adjustment step. The resulting calibrated images are then fed into
a depth estimation procedure based on a robust fusion of pairwise dispar-
ity image measurements. Since modern graphics accelerator cards are able
to transform and texture huge amounts of triangles very e�ciently, a model
consisting of a high-resolution textured triangle mesh is generated as the �nal
scene representation.

While complete systems for the reconstruction of models from image se-
quences have been proposed for ideal perspective images [Cornelius et al.,
2004, Nistér, 2001, Pollefeys et al., 2004], this is not yet as advanced for
general single-centered cameras. Multiple camera models exist for wide �eld-
of-view cameras (e.g. [Perwass and Sommer, 2006, Geyer and Daniilidis,
2001, Scaramuzza et al., 2006b, Fleck, 1995, Micusik, 2004]), for which sev-
eral tailored approaches for self-calibration, structure from motion, recti�-
cation or depth estimation have been proposed (e.g. [Micusik and Pajdla,
2006, Takiguchi et al., 2002, Gonzalez-Barbosa and Lacroix, 2005, Geyer and
Daniilidis, 2003]). These typically exploit properties of the model e.g. in the
sense that Geyer and Daniilidis [2003] assume that epipolar lines are circles
in catadioptric images. Instead, the proposed system rigidly works on rays
in space and assumes the internal camera calibration to be known, this way
not requiring a particular model and being applicable to perspective cam-
eras (with or without radial distortion), �sh-eye lens cameras, catadioptric
cameras or any other single center of projection camera that has a smooth
and invertible mapping from image coordinates to unit rays in the camera
coordinate system.

The bene�ts of using spherical rather than perspective cameras, is on the
one hand the better posed problem for estimation of center and orientation
[Streckel and Koch, 2005] and on the other hand the ability to consistently
reconstruct large scenes. Using perspective cameras large scene reconstruc-
tions can be generated by stitching depth maps of di�erent viewpoints. Since
this is prone to errors, Kang et al. [Kang and Szeliski, 1996] proposed a sys-
tem that uses cylindric panorama images from rotated cameras. Because
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of the di�cult image acquisition process such systems are less attractive.
The UrbanScape program [Mordohai et al., 2007] fuses video from multiple
perspective cameras, which together cover a very large �eld of view compa-
rable to a spherical camera. Exact calibrations between the cameras and
an expensive inertial sensor are required and the system is quite obtrusive.
Although the speed and model size is quite impressive the models created are
not intended for tracking but are targeted for prompt visualization. Also the
Wägele project [Biber et al., 2006] requires the calibration between a laser
scanner and a camera to construct 3D models of an environment and is not
as �exible and mobile as a single camera. The major bene�t in the presented
work is therefore the presentation of a complete scene reconstruction system
dealing with single centered (spherical) cameras. Thereby the large �eld of
view is thoroughly exploited to improve reconstruction of large scenes.

After the internal camera parameters are calibrated, a video sequence of
the scene is taken covering the area in which the camera will move later on.
From this stream of spherical images, the �rst step in the reconstruction pro-
cess is the determination of exact camera parameters for each frame. Camera
parameters are typically separated into two types: On the one hand the ex-
ternal parameters, which describe the position and orientation of a camera
and on the other the internal parameters, which de�ne the image formation
process. The kind of the internal parameters depends on the camera model
assumed. In this work the camera model originally proposed in [Micusik
and Pajdla, 2003] is utilized, which is described in detail in [Bartczak et al.,
2007]. This model is appealing because it can represent many single centered
cameras including distortions.

6.1.1 Structure from Motion from Spherical Images

Given an image sequence and an internal camera calibration, in this sec-
tion the algorithm for the reconstruction of position and orientation of the
camera is described. One important aspect of the algorithm is the rigorous
application of decision theory and error propagation. After the motivation
of uncertainty usage and its description, the computation of image-to-image
correspondences is presented. These correspondences are the basic measure-
ments for both parts of a two-stage algorithm. The �rst stage is called
bootstrapping, used for initialization, and the second stage is tracking, used
for frame-to-frame camera pose estimation from 3D points. An overview for
geometry update and reference frame selection concludes this section. The
underlying assumption of the algorithm is that the internal camera parame-
ters are known throughout the sequence. This requirement of the algorithm
is no major restriction because typical omnidirectional lenses have a �xed fo-



134 CHAPTER 6. FREE-FORM SURFACE MODELS

Figure 6.2: Sample �sh-eye images with 190◦ �eld of view. Although the
camera has been moved several meters in between, the images do not look too
di�erent and much of the surrounding of the scene can be used for tracking.
As a drawback, it can be seen that the lights, or when operating outdoor,
the sun is often in the �eld of view of the camera.

cus lenses (no zoom) and hence the internal camera parameters are constant.
They can reliably be determined in an initial calibration step using a special-
ized scheme for spherical cameras as for instance proposed in [Scaramuzza
et al., 2006b]. Knowing the internal calibration during camera path recon-
struction is in particular advantageous because it allows to transfer image
observations back into three dimensional Euclidean space and avoids certain
pitfalls and degeneracies in uncalibrated structure from motion.

Uncertainty and Error Propagation

The underlying idea of the presented SfM algorithm is usage of information
about measurement uncertainties and the rigorous application of error prop-
agation wherever possible to avoid heuristics and hence reduce the dimension
of parameter space. Unless noted otherwise, uncertainties are approximated
by multivariate normal distributions parameterized by mean vectors and co-
variance matrices, again because the Gaussian is the least biased distribution
assumption under the maximum entropy model. Error propagation is con-
ducted either using the unscented transform or, in case of linear functions,
using linear error propagation. The unscented transform can be imagined
as a sparse Monte-Carlo transformation of uncertainty: It samples an iso-
probability surface of a Gaussian distribution where the surface intersects
the ellipsoids principal axes, transfers all samples according to an arbitrary
function and computes mean and scatter of the weighted points in the new
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space. For instance, when measuring a point with an uncertainty in the im-
age, given the calibration from the previous section, the unscented transform
can be applied to compute the uncertainty of the ray in the camera coordinate
system. Because of the low number of well-chosen samples, it is much faster
than Monte-Carlo methods and has the advantage of avoiding the analytical
computation of Jacobians as needed in linear error propagation [Mikhail and
Ackermann, 1976].

Many parts of the algorithm are based on projective entities and hence a
representation of uncertainty in projective space is needed. Förstner [Först-
ner, 2005] gives an excellent overview over uncertainty representation, prop-
agation and stochastic testing of linear and bilinear relations in projective
space. One fundamental problem when dealing with uncertainties in pro-
jective space is the de�nition of the incidence relation between projective
entities leading to an in�nite number of equivalent representations of a pro-
jective vector. To circumvent this problem, Förstner suggested the exclusive
usage of normalized projective entities for all operations. This can be in-
terpreted as reducing the projective space to the surface of the unit sphere
around the origin. A very convenient side e�ect of this approach is that
uncertainties of viewing rays of a camera can be easily represented with-
out numerical di�culties, even if they are perpendicular to the optical axis.
Hence the algorithm can naturally cope with cameras with a �eld of view of
more than 180◦.

An important advantage of using uncertainties is the reduction of the
parameter space. The question of incidence for example can be easily coped
with using a single and easily interpretable parameter for all occurrences
(instead of multiple outlier thresholds). This is conducted using the χ2 test
[McGlone, 2004] in the projective space (see also appendix B.3.1).

Correspondence Estimation

The reconstruction process is separated into a bootstrapping and a track-
ing stage and in such it is similar to the approach presented in [Pollefeys
et al., 2004]. However, instead of matching corner features in each image,
LAF correspondences can be used as well. Correspondences in subsequent
video images can simply be estimated using iterative, gradient based min-
imization of intensity di�erences in a surrounding window as proposed in
section 4.2.5. Of course, the approach can as well be based on simple 2D cor-
respondences. After convergence of each minimization, the remaining grey
value MAD (mean absolute di�erence) for the tracked window is computed:
Low MAD values represent good matches of the local image window, while
mismatches typically produce high MAD values. Since the MAD depends on
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the camera (e.g. image noise) and the scene (e.g. lighting change), a �xed
threshold to reject mismatches is hard to de�ne. Therefore, a robust statisti-
cal model is applied to the set of all correspondences between two subsequent
images, which relies on the assumption that more than half of the correspon-
dences are correct: All correspondences that have a much worse MAD than
the Median of all MADs are rejected (X84 rule [Hampel et al., 2005]). This
can be seen as a dynamic threshold that automatically adapts to increased
noise as proposed in [Fusiello, 1999].

To account for violations of the image brightness constancy assumption,
all image patches used in the correspondence estimation process are intensity-
normalized to zero mean and unit variance during the estimation process.
This intensity normalization allows reliable correspondence estimation even
in the presence of strong illumination changes (compare [Baker et al., 2003]).
The uncertainty of the displacement vector can be approximated using the
standard technique for overdetermined linear systems based on the residuum
and on the Jacobian of the equation system [Mikhail and Ackermann, 1976].
This provides correspondences between the images.

Having described how correspondences and their uncertainty are obtained,
in the next section the reconstruction of the camera path is discussed. This
is divided into an initialization (boot-strapping) stage and a frame-to-frame
tracking stage before being optimized by a global bundle adjustment.

Bootstrapping Stage

Bootstrapping of the reconstruction process is based on robust estimation of
the essential matrix E (cf. to [Hartley and Zisserman, 2000]) from 2D-2D
correspondences between the �rst and a second frame from the image se-
quence. The essential matrix captures the relative pose between two views
of a scene and can be computed based on 2D-2D correspondences. Care must
be taken to assure that su�cient baseline exists between the two initial im-
ages for successful initialization [Beder and Ste�en, 2006]. Without further
knowledge, the relative pose can be determined only up to scale from im-
age correspondences. Image correspondences typically contain a signi�cant
amount of erroneous data (outliers) stemming, for example, from repetitive
textures or measured at depth discontinuities. Also, correspondences on
moving persons or objects that violate the static scene assumption must be
rejected. Hence a robust approach, like for example the RANSAC [Fischler
and Bolles, 1981] algorithm or the preemptive RANSAC [Nistér, 2003] al-
gorithm in combination with the 5-point algorithm [Nistér, 2004], must be
used for the estimation process. Each correspondence is classi�ed into either
inlying or outlying based on the χ2 test in the projective space [McGlone,
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Figure 6.3: Sample �sh-eye images with 190◦ �eld of view. In the left im-
age, the trajectories of tracked regions can be seen. In the right image the
concentric dashed circles show the 60◦,120◦ and 180◦ �eld of view circles, the
small ellipses show the 20 times magni�ed standard con�dence region of each
feature.
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2004], where the decision is based on the fundamental constraint (cf. to
[Hartley and Zisserman, 2000]). This way, a threshold for outlier detection
can be determined, which depends on the uncertainty of the data itself and a
probability to erroneously reject a good correspondence (false negative rate).
This probability is a scene independent parameter of the system and can be
chosen e.g. as 1%. Robust estimation is described in more detail in section
C.1.

Afterwards the resulting essential matrix is re�ned by minimizing the Ma-
halanobis distance between inlying points and their corresponding epipolar
lines. A more in-depth review of essential matrix estimation can be found in
[Woelk, 2008].

Using the re�ned relative pose and the image correspondences, 3D fea-
tures are determined including their uncertainty. To obtain two initial poses
and a set of 3D points from the correspondences compatible with the essen-
tial matrix the standard methods as described in [Hartley and Zisserman,
2004] are applied. After successful bootstrapping the algorithm switches to
the tracking stage.

Tracking Stage

Once this �rst reliable relative camera orientation and position, together with
a sparse scene geometry have been found, the reconstruction scheme switches
to frame-to-frame pose estimation based on 2D-3D correspondences. Again
the features are tracked into subsequent frames propagating the information
about the corresponding 3D structure, which is Kalman-�ltered. Whenever
the number of tracked features drops below some threshold (e.g. several hun-
dred) a feature detector is applied to the most recent image and the new
features are tracked along with the older ones. Due to perspective e�ects,
lighting and image digitization, feature uncertainties in general grow with
larger distances.

The pose reconstruction from 2D-3D correspondences is done by mini-
mizing the Mahalanobis distance between the projection of the 3D features
and their uncertainties and the parameters obtained by the tracker. Outliers
are detected prior to the estimation using again a RANSAC [Fischler and
Bolles, 1981] algorithm in combination with stochastic testing of incidence
using again the χ2 test.

Geometry Update

The underlying assumption is that of a rigid scene and hence the image se-
quence can be regarded as subsequent measurements of the 3D geometry of
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each tracked feature. A separate Kalman �lter for each point is used to inte-
grate the information from these measurements into the 3D geometry with
associated uncertainty. Each new feature measurement is used in the update
step of the Kalman �lter cycle. Tracked features that have no associated 3D
correspondence are now triangulated if their uncertainty is below a threshold.
3D features which have not been tracked into the image under inspection are
projected into that image and registered using the KLT approach. This al-
lows to re-use temporarily occluded features and to avoid drift when features
get out of and come into sight again. After one image is completed, corre-
spondences are searched in the temporally subsequent image using the KLT
tracker, and pose estimation and geometry update is run for that image.

Reference Frame Selection

Since in dense video sequences nearby frames are highly correlated but each
creates vast amounts of data, a strategy is needed to discard such useless
data. Therefore each computed pose is compared to the previous images'
poses in the sequence and forgotten if it has too little innovation, so that
only some reference frames are remembered. Innovation is understood as the
amount of parallax between the camera and all other views. The parallax
can be measured by the 2D �ow �eld induced by the sparse 3D reconstruc-
tion. Before these reference views are passed to dense reconstruction their
corresponding camera parameters and the sparse scene geometry is re�ned in
a bundle adjustment step. While the bootstrapping and incremental recon-
struction approach presented so far already produces a good initial estimate
for each 3D point and each camera pose, the �nal bundle adjustment pro-
cedure is intended to obtain an optimal least-squares solution for the whole
reconstruction problem.

6.1.2 Bundle Adjustment

After application of the above described SfM algorithm a sparse Euclidean
model of the scene is given. However, small errors in the internal camera
calibration can lead to small errors in the camera poses and the triangulated
3D features. Furthermore, after bootstrapping a �rst two view geometry, the
reconstruction was run incrementally so that drift can occur and errors due
to noise are not fairly distributed.

Since it is desirable for subsequent depth estimation and model build-
ing that drift is avoided and that all camera parameters are estimated with
about the same reliability the reconstruction is made more consistent by the
application of a �nal bundle adjustment of the sparse reconstruction, using
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the Gauss-Markov model [McGlone, 2004]. A comprehensive overview of the
bundle adjustment technique can be found in [Triggs et al., 2000]. Additional
to the cameras' pose parameters and the 3D features, internal camera param-
eters can be subject to the global optimization. These internal parameters
are however constrained to be the same for all views, since only one camera
with �xed intrinsics has been used.

To account for remaining outliers from the SfM stage, to which simple
least squares approaches are very susceptible [Hampel et al., 2005], the error
of each individual measurement is clipped to λ pixels1. This is similar to
an M-Estimator using a Huber in�uence function [Zhang, 1997]. The Leven-
berg/Marquardt method (cf. to [Triggs et al., 2000]), which blends between
the Gauss-Newton method and pure gradient descend, is used to iteratively
approach the minimum of the error function. This way a decrease of error for
each step is guaranteed, even if the quadratic error function �t of the Newton
method does not re�ect the error surface well. Having reached the minimum
of the error function, the computed camera poses, the intrinsic parameters
and the sparse scene reconstruction can then be exploited to reconstruct
scene surfaces.

6.1.3 Dense 3D Reconstruction

After having reconstructed the camera path and a sparse model of the scene,
a dense textured model of the scene has to be estimated containing at least
the interesting surfaces for tracking. The �rst step here is computing pairwise
dense depth estimates from promising image pairs. Here, one reference view
is �xed and for each other image that has a promising baseline with respect
to the sparse scene reconstruction, a dense correspondence map is obtained.
Since the camera poses of the images are known, corresponding image points
directly imply the depth of the associated 3D scene points. These depths are
stored in a depth map of the �xed reference view, such that for this view
�nally many depth maps exist. They are fused using a robust statistical
approach and provide a dense approximation of the scene surface. Together
with the texture from the images, a triangle mesh model is then set up
from the data, which can be exploited for tracking. Further details on the
reconstruction can be found in [Bartczak et al., 2007].

1for the presented reconstruction system it was found that the average projection error
of several hundred 3D points is usually in the range of up to one pixel, therefore λ = 1.0
is chosen.
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Figure 6.4: A depth map (left) for a �sh-eye view and a triangle mesh model
without texture (right). Dark pixels in the depth map are closer to the
camera than brighter, while completely black pixels have unknown depth.
The depth map and the triangle mesh have been postprocessed here for
illustration purposes.

6.2 Initialization using a Descriptor Database

The 3D model constructed in the previous section is a reconstructive model
of the scene. Given the pose of the camera, a model view of the scene can
be synthesized, which is suitable for analysis-by-synthesis tracking. If the
camera pose is however not known at all, as typical for a starting phase, a
discriminative model of the scene is required that can identify which parts of
the scene can be seen. The system proposed in [Köser et al., 2006b] can be
used to generate and apply such a model. Also other, similar linear subspace
methods became recently popular for feature lookup [Mikolajczyk and Matas,
2007, Winder and Brown, 2007, Hua et al., 2007]. Before the details of the
system are presented, a short summary on other view registration techniques
is given.

6.2.1 Previous Work on View Registration

In the �eld of camera registration in a scene, traditionally markers have been
used [Thomas et al., 1997, Foxlin and Naimark, 2003, Kato and Billinghurst,
1999]. Early marker-less approaches on registering views in Augmented Real-
ity scenarios tried to compute orientation only, e.g. using the Fourier-Mellin-
Transform [Stricker and Kettenbach, 2001, Stricker, 2002] in a panorama
scenario where the camera could only rotate but not change its position.
The Fourier-Mellin method is a phase-based method to obtain a 2D simi-
larity transform for the whole image, which breaks in presence of signi�cant
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perspective distortions, or if parts of the image are cluttered, occluded or
look di�erent. Other methods use histogram or P-Channel matching [Fels-
berg and Hedborg, 2007a,b], line-based registration [Thomas, 2007, 2006] or
local features [Nistér and Stewénius, 2006, Lepetit et al., 2005, Köser et al.,
2006b]. The local feature based methods have been applied successfully for
image-to-image matching, panorama registration and also six DOF camera
pose computation [Skrypnyk and Lowe, 2004]. The principle is that a par-
ticular detector/descriptor combination produces the same - or a slightly
di�erent - feature vector for the same 3D region under di�erent conditions,
while producing other vectors for di�erently looking regions. The feature
vector can be interpreted as a signature. Among all the detector/descriptor
pairs, DoG/SIFT [Lowe, 2004] is known to perform well [Mikolajczyk and
Schmid, 2005] and can be computed quite fast. Although being invariant
only against scale, rotation and a�ne brightness change of a 2D image, it is
robust against mislocation, perspective e�ects and several other distortions.
Robust means that small violations of the ideal conditions will cause only
small disturbances of the feature vector. In that case the feature vectors
occupy a small local area in the feature space. This makes it well-suited for
the view registration purpose and it will be used in this section, though the
proposed techniques can also be applied to other features with such proper-
ties like the a�ne features discussed in section 3.6. Often however, full a�ne
invariance is not necessary because there is information available on the sce-
nario under consideration. In [Köser and Koch, 2007] it has been shown that
e.g. in panoramic scenarios (constant camera center) or when depth infor-
mation is available, tailored approaches can lead to increased descriptiveness
while providing at the same time also increased invariance. The important
aspect is that for the transformations considered (here 6DOF pose in a cer-
tain range) a large fraction of the features can be redetected and obtains a
similar descriptor.

For a 2D feature to provide signi�cant information to discriminate it from
others, the descriptions must be quite high-dimensional. On the other hand,
when one seeks to �nd a similar feature vector in the space of all possible
features, it is easy to run into the curse of dimensionality if the descrip-
tion vector is too large. One way of organizing points in high dimensional
spaces is space-partitioning using kd-trees[Beis and Lowe, 1997]. In three
dimensions this is comparable to a binary octree, which separates each di-
mension only into two segments. For the typical SIFT feature dimension of
128 a complete binary space partitioning would create a tree with 2128 (more
than 1038) leaves. Therefore the method of dimensionality reduction given
in [Beis and Lowe, 1997] is compared to di�erent methods of learning the
relevant parts of the high-dimensional feature descriptions. Such methods
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have been applied successfully in face recognition [Belhumeur et al., 1997]
and other classi�cation tasks, often however only on the raw image signal:
Multiple discriminant analysis (��sher-faces�) and principle component anal-
ysis (�eigen-faces�). The advantages over the technique of using vector entries
with largest variance, which is a common feature space matching technique
today [Skrypnyk and Lowe, 2004] are also shown. In contrast to PCA-SIFT
[Ke and Sukthankar, 2004], the goal is not to �nd out which dimensions of
the SIFT descriptor are less interesting in general and to �nd the subspace
of all feature descriptions a DoG/SIFT operator can produce on the set of all
images ever possible. This encodes what all descriptors do have in common.
Instead, the approach explicitly wants to learn what is di�erent between the
clusters of features in a speci�c scene. The learning is deliberately based on
the knowledge that di�erent representatives belong to the same class like in
[Grabner and Bischof, 2005], but the approach does not only seek for one
representative per class but also looks for a transformed small representation
to make a fast distinction between the classes possible.

In that sense the idea is somewhat related to the Randomized Trees ap-
proach [Lepetit et al., 2005], which does not rely on high-level features but
on massive simple tests. Instead of performing a nearest neighbor search
in one tree and applying a decision, they propose a soft-classi�cation by
using several trees, where each tree node encodes class probabilities. The
�nal classi�cation is performed by combining the probabilities. While this
is an interesting approach in the handling of the probabilities, the authors
have proposed it only for recognition and pose computation of single objects,
presumably because the simple decisions made in the trees sacri�ce discrim-
inative power for the sake of speed. They have not evaluated whether the
approach does also extend to larger scale scenarios.

6.2.2 Scene Database

To register a view in the online phase a database of features is exploited,
which has to be set up o�ine. During the creation of the free-form surface
model as explained in section 6.1, also robust image features are tracked from
the video sequence, and in each image their descriptor vectors are extracted
and stored.

3D Features

If the descriptors for corresponding 2D points do not vary too much across
several images, it can be assumed that the invariance/robustness properties
of the feature type are still satis�ed, e.g. for SIFT features that the 2D image
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regions are projections of a three dimensional locally continuous surface from
similar viewpoints and that all projections of this surface result in similar
descriptors. The surface is called a 3D feature in the following. However,
the surface shape in 3D is of no interest here, only the class of descriptors
it produces, as it has been proposed in [Köser et al., 2006b]. It is assumed
that they form a continuous area in descriptor space and their di�erences are
e.g. due to small localisation distortions or transformations against which
the descriptor is not completely invariant. Combining incremental structure
from motion (in contrast to the reference image technique of [Skrypnyk and
Lowe, 2004]) allows to process long image sequences with lots of descriptor
measurements.

If each class of descriptors covers a coherent and relatively small part in
the high-dimensional descriptor space, and any two distinct classes are at
di�erent locations in this space, the matching process can be viewed as a
classi�cation problem. For each 2D feature detected in the online phase the
best matching class in descriptor space is wanted. Beis and Lowe proposed an
approximate nearest neighbor search on a kd-tree partitioning the descriptor
space [Beis and Lowe, 1997]. The partitioning should at best represent the
distribution of the various classes, therefore some parts in the feature space
are more interesting than others. To traverse a balanced binary tree of depth
d (e.g. d = 15) one has to pass d decision hyperplanes, which divide the
feature space. This tree has 2d leaves (distinct areas in feature space). If
d is too large (for instance the original vector size 128), this leads to an
unmanageable number of bins (2128). Even for depths not much larger than
20, the tree is over-�tted and only sparsely populated, unless one uses a huge
number of features. For a small d on the other hand the question is extremely
important, which is the best partitioning of the space and what are good
dividing hyperplanes. Beis and Lowe solve the problem by computing the
variance of each descriptor dimension across all features and select only the
most variant entries. Instead, here it is proposed to apply classical methods
of dimensionality reduction from pattern recognition. These methods are
compared next.

Dimensionality Reduction

From the o�ine phase there are many 3D features that have been seen in
several images. Each 3D feature de�nes a class with mean and scatter in
feature space. LetDi

c ∈ Rh be the ith (of nc) descriptor vector for class c (of a
total of n classes). Since it has h entries, there is an h-dimensional descriptor
space (e.g. for SIFT typically h = 128). A reduction transformation R

[
Di

c

]
=

dic : Rh 7→ Rl, which shrinks the descriptor to a low dimension number l (e.g.
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l = 15) is required now. However, the descriptor should not lose too much
discriminative information needed for matching.

Principle Components Analysis The most popular approach to dimen-
sionality reduction is principle component analysis (PCA). PCA computes
the mean and scatter of all descriptors (see [Duda et al., 2001]). Di�erent
means are now de�ned as follows:

µc =
1

nc

∑
i

Di
c µ =

1∑
c nc

∑
c

∑
i

Di
c µMeans =

1

n

∑
c

µc

(6.1)

Σ =
∑
c

(
∑
i

((Di
c − µ)(Di

c − µ)T)) (6.2)

The principal components are now the eigenvectors ejΣ of Σ according to
[Duda et al., 2001]:

ΣejΣ = λjΣe
j
Σ (6.3)

where ejΣ are sorted according to their eigenvalues λjΣ, λ
0
Σ being the largest.

Let êiΣ be the normalized eigenvectors:

êiΣ =
1√
λiΣ
eiΣ (6.4)

Finally, the reduction transformation PCA is de�ned as:

RPCA

[
Di

c

]
= (ê0

Σ ê
1
Σ ... ê

l
Σ)T(Di

c) (6.5)

See [Duda et al., 2001] for a detailed derivation. A slight modi�cation of
PCA, called PCA-Means in the following, takes into account classes and is
computed only using the means of the classes, which gives an equal weight to
each class and does not prefer strongly populated classes over small ones. The
only di�erence in computation is that equation (6.2) is replaced by equation
(6.6), where ΣMeans is also called the inter class scatter matrix:

ΣMeans =
∑
c

((µc − µMeans)(µc − µMeans)
T) (6.6)

Compared to classical PCA de�nition, the mean is neglected in the PCA
reduction methods (see equation (6.5)). However, since the reduction trans-
formation is linear, the mean also transforms linear and introduces a constant
o�set for all features, which can be ignored since only the nearest neighbor
is of interest and no absolute position.
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PCA is designed to minimize the reconstruction error, therefore it is suit-
able for compression/uncompression of similar vectors in high-dimensional
space. However, it does not account for classes and does not aim at preserv-
ing separability of vectors in reduced space. In other words, PCA preserves
what is common between two classes, not what is di�erent. The goal of �nd-
ing a linear transformation that maximizes class separability is the topic of
discriminant analysis.

Multiple Discriminant Analysis Now an extension of multiple discrimi-
nant analysis (MDA) [Duda et al., 2001] is proposed that falls back smoothly
to PCA in case only sparse within class information is available. The idea
of MDA is to represent each class of descriptors by a mean and scatter and
�nd a transformation RMDA that minimizes within class scatter while max-
imizing the scatter of all class means. The within class scatter Σc and the
total scatter matrix Σtotal (imagine as an average within class distribution)
are de�ned as:

Σc =
1

nc − 1

∑
i

((Di
c − µc)(Di

c − µc)T) Σtotal =
1

n

∑
c

Σc (6.7)

The rows of the reduction transformation matrix are the solutions ej to the
generalized eigenvalue problem [Duda et al., 2001]:

ΣMeanse
j = λjΣtotale

j (6.8)

If Σtotal is nonsingular, the system can be converted to a standard eigenvalue
problem like equation (6.3). However, particularly when Σtotal is estimated
from few samples in the high-dimensional space, it will be singular, mainly
because of missing data. A full rank can be enforced by applying ridge
regularization [Skurichina, 2001] to the total scatter matrix, i.e. diag(σ2) (a
diagonal matrix with entries σ2) is added. Small values of σ do not a�ect the
shape of Σtotal, while larger ones make the diagonal dominate the matrix and
very large values make it in fact a multiple of the identity matrix. In that
case, equation (6.8) is the same as equation (6.3) for PCA-Means, therefore
the value of sigma controls between MDA and pure PCA behavior. Since
within class shape information should be preserved, a minimum noise level
is computed, as the smallest existing eigenvalue of equation (6.8) clipped
against a minimum empiric noise. This leads to a smooth transition from
PCA-Means to MDA as soon as within class scatter is available.

Most Variant Entries The approach chosen by Beis and Lowe [1997] can
also be viewed in the context of dimensionality reduction. They compute the
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Figure 6.5: Exemplary distribution of features of 20 classes (randomly cho-
sen) of a real video sequence of 400 images projected to the �rst two axes
(left), the �rst two MDA axes (right). MDA representation shows more dis-
tinct local clusters .

variance for each vector entry separately. This corresponds to only taking
into account the diagonal elements of Σ of equation (6.2) and sort vector
components by these values. By disregarding the o�-diagonal elements, the
relations between the vector entries are thrown away. This is suboptimal for
descriptors whose components are correlated, which is certainly the case for
the SIFT descriptor, because the soft-binning technique distributes gradients
into di�erent vector entries upon mislocalization. In other words, the entries
of the SIFT descriptor are not uncorrelated as a strictly diagonal scatter
matrix would imply. However, adopting this scheme, the resulting reduction
matrix is a pure permutation of the columns of the identity matrix.

Database Representation

According to the work presented in [Köser et al., 2006b], in this work the
extension of the MDA method is used, since it is the most powerful transfor-
mation. Hence, the original feature vectors can be transformed into a space
where the dimensions are sorted by importance. A kd-tree is then built in
that space with depth d = log2 [c] such that in average each bin holds a
class. In the transformed space the method of [Beis and Lowe, 1997] is then
applied.
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Retrieval of Features and Camera Registration

Once the database is set up, the o�ine phase is �nished. In the online
phase, when the camera is switched on, 2D features can be extracted from
an unknown image. Each feature is transformed according to the reduction
and traverses the tree using the backtracking strategy [Beis and Lowe, 1997]
until a better match in reduced space cannot be found, a maximum error in
reduced space is reached or - if real-time is an issue - a (constant) maximum
number of comparisons has been reached. The best match so far or �no
match� is returned. The �no match� statement is particularly important
because it decreases the false positive rate. Fewer outliers again speed up
robust pose computation, which is done using RANSAC[Fischler and Bolles,
1981].

6.3 Tracking Free-form Surface Models

Given an initial pose, the expected view from the model can be rendered, the
pose can be optimized according to the di�erences in the rendered and the
captured image and a pose for the next image is predicted using a motion
model. If the optimization fails, re-initialization using the robust features
of the previous section 6.2.2 can be performed. Otherwise the tracking pro-
cess continues with the next predicted pose and the next image. The free-
form surface model used for rendering can be created with the methods of
[Bartczak et al., 2007] or can be any other textured VRML or CAD model of
the scene. Regions in the model that are de�nitely not suitable for tracking
(e.g. highly re�ective areas, non-rigidities like water) and that give rise to
many incorrect matches should be removed from the model beforehand to
avoid unnecessary additional outliers. On the other hand, it can be helpful
to interpolate or adjust uncertain or missing regions (e.g. on planes) that are
suitable for tracking to increase the number of trackable surfaces.

The key idea is that feature tracking is improved by compensating the
features' appearances with respect to 3D viewpoint and lens e�ects, which
can e�ciently be done on graphics hardware with sub-pixel accuracy. In
that sense the proposed approach is similar to the one in [Denzler et al.,
2003, Heigl et al., 2000], which used plenoptic models of an environment to
estimate a three DOF robot pose in a particle �lter approach. The authors
render multiple hypothesis images and assign a score to each, depending
on a similarity between the rendered and the real image. However, with
increasing dimension (e.g. full six DOF for camera pose), more samples (i.e.
rendered images) are required, and the approach slows down. Instead, in the
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system discussed in this thesis, a hardware-accelerated approach is proposed,
which exploits depth information from a model, this way allowing to directly
compute the camera pose from only one synthesized image of the model as
described next:

From the predicted, approximate pose, a �sh-eye image of the o�ine
model can be synthesized using the same (intrinsic and extrinsic) camera pa-
rameters as the real �sh-eye camera has (see section 6.3.1). Ideally, no inten-
sity di�erences between rendered and real image should be visible. Therefore
these could be minimized to obtain the correct camera pose. However, local
illumination change and moving scene content violate the image brightness
constancy assumption. Consequently, a global gradient-based approach as
in [Koch, 1993] cannot be used to estimate the pose parameters in the given
scenario. Instead, local 2D o�sets of individual free-form surfaces are deter-
mined using the KLT approach [Lucas and Kanade, 1981]. From the exact
locations of the surfaces in the camera image the �nal camera pose can be
computed in a robust way as described in section 6.3.2. Section 6.3.3 is ded-
icated to the evaluation of the system on real and synthetic data followed by
a discussion.

6.3.1 Spherical Camera

In this system a wide �eld-of-view camera is proposed, e.g. with a �sh-eye
lens, which has a nearly linear and isotropic relation between distance in
pixels to the principal point and the angle between the ray and the optical
axis [J. Neumann, 2002]. Fleck [1995] calls this the equidistant projection.
A comparison between spherical and perspective cameras regarding tracking
can be found in [Streckel and Koch, 2005], which showed that pose estima-
tion is more accurate with a wider �eld of view and that the lower angular
resolution of the �sh-eye lens is more than compensated by its wide �eld of
view. Furthermore, such a camera covers a larger solid angle and therefore
features can be seen for a longer period of time in image sequences.

Let P be the function that computes a 2D image point xi from a 3D scene
point X i, which takes care of all internal and external camera parameters of
the real camera (CCD size, lens distortion, camera pose p, ...):

P [p,k,X i] = xi (6.9)

P is actually composed of extrinsic camera parameters, i.e. the pose p (po-
sition and orientation) of the camera, and intrinsic camera parameters k,
which describe the mapping of 3D points in the camera coordinate system
to image coordinates, i.e. the image formation process. The internal camera
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parameters do not change during tracking, since they depend only on the lens
and the hardware, here only the pose is unknown. The internal camera trans-
formation can be described with the function Kk, where Kk maps projection
rays in the camera coordinate system to 2D points in the image depending
on a vector of internal parameters k. Therefore when a 2D image point xi is
measured in any camera, K−1

k
can be applied to compute the ray that maps

the image point onto the unit sphere within the camera coordinate system.
The mapping from world coordinates to normalized camera coordinates (a
ray) by P̂ is now de�ned as:

P̂ [p,X i] = K−1
k

[xi] = x̂i

where P̂ is only a function of the pose and the 3D point. k can be deter-
mined by calibration [Scaramuzza et al., 2006b]. If the e�ects of Kk are
removed from the image measurement, one can compute on rays in the cam-
era coordinate system, which is quite �exible and abstracts from the under-
lying hardware: Although the proposed wide �eld-of-view cameras provide
the aforementioned advantages, the methods in this contribution are not re-
stricted to a particular �sh-eye lens and can in principle be applied to all
calibrated cameras with a single center of projection.

Virtual View Synthesis

In a similar way to how the 2D positions and uncertainties have been nor-
malized given an internal camera calibration, a �sh-eye image can be synthe-
sized using the graphics hardware (compare �gure 6.6). The GPU already
provides very e�cient techniques of generating ideal perspective images of
virtual scenes, e.g. scenes represented as textured triangle meshes. In order
to synthesize a �sh-eye image from a given camera position, it is possible
to render six perspective views in the six main directions (left, front, right,
back, bottom, up). In computer graphics this is known as cube-mapping of
environment [Salomon, 2006]. Afterwards these 6 images are stitched to-
gether to form a �sh-eye image by means of indirect texture look-up. This
again exploits that the optical ray for each pixel in the �sh-eye image is
known by calibration and that therefore the relevant perspective cube face
can be chosen. Furthermore the coordinates are known where the perspec-
tive camera observes this ray. This technique can be e�ciently implemented
using OpenGL/CG [Fernando and Kilgard, 2003] and runs directly on the
graphics hardware. Furthermore the cube's z-Bu�er values can be processed
to produce a spherical depth map in a similar way. With the same scheme,
perspective views with radial distortion or other single center of projection
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Figure 6.6: Top: 3D view of cube-mapped environment (perspective views)
Bottom:Fish-eye image with center, 45◦, 90◦, 135◦ and 180◦ �eld of view
circles. To synthetically generate a �sh-eye image, the faces of a cube are
rendered as perspective images with 90◦ �eld of view. Each cube side color
image and z-map is rendered into a separate texture using frame bu�er ob-
jects. The stitching is performed using a displacement texture holding the
direction of the optical ray for each pixel of the �nal image. From these direc-
tions the accessed cube side and the texture coordinates are calculated within
a fragment shader and the appropriate colors and z-values are transfered to
the �nal frame-bu�er.

cameras can be simulated. The resolution of the cube maps must be care-
fully chosen so that the stitched image can still contain the highest frequency
components. This requires the determination of an upper bound of the local
mini�cation during stitching. Aliasing on the other hand is avoided auto-
matically, e.g. using trilinear texture �ltering on the graphics hardware.

6.3.2 Camera Tracking

Synthesizing a Model View

Given an approximate pose, the model is rendered (compare section 6.3.1)
and the true pose is computed from the displacement vectors between regions
of the rendered image and the real camera image. By using a �sh-eye lens
one has all the advantages in visibility and geometrical stability, however
the appearance of the model is quite di�erent between distant camera poses.
Therefore the rendering must undistort these e�ects by warping the model
image into the new viewpoint and allowing to establish correspondences using
standard techniques like the KLT[Baker and Matthews, 2004].
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The �sh-eye image is synthesized from the model (cf. section 6.3.1). The
assumption here is that the reconstructed surfaces are Lambertian (cf. to
[Jähne, 2005, p.191]), i.e. from each viewpoint a point on the surface is ob-
served with the same color. Real surfaces however usually have also specular
properties, which are not captured in our models. Such e�ects can be han-
dled better using plenoptic rendering [Heigl et al., 2000] or view-dependent
texture mapping, where the model is textured from a previously stored view
close to the current view (as e.g. in [Koch et al., 1999]). A drawback of such
dynamic texturing techniques is that blending strategies are required when
moving from one viewpoint to another. If temporal illumination changes
can occur (dynamic lighting), which is typical for outdoor scenarios, none
of the methods will synthesize the exact camera image, therefore the simple
textured mesh approach is followed and illumination will be compensated
locally as explained later.

Correspondences between Image and Model

After the free-form surfaces are rendered, simple tests such as clipping tech-
niques can be used to check geometrically which ones are projected into the
virtual image. For those, image-to-model correspondences are sought.

Each rendered free-form surface can serve as an anchor for tracking as
long as it has a minimum size, so that tracking is feasible. Its center point
xi is back-projected to create its corresponding 3D point xm on the model
using the depth from the renderer. This delivers a 3D model feature.

For each surface individual gradient-based minimizations of the intensity
di�erences at these locations xi between the patches in the synthesized and
the real image (see �gure 6.7) is performed to obtain a 2D displacement
vector. This is more robust than a gradient-based global optimization of
the pose across the whole image [Koch, 1993], since several scene parts may
be occluded by persons or other unmodeled objects and it is hard to decide
within one iteration step, which pixels should be used and which not. In
contrast, for a whole free-form surface the projection error can be tested to
see whether it is an outlier [McGlone, 2004]. Furthermore, for each free-form
surface, di�erent local lighting changes may occur, e.g. due to temporarily
illuminated regions or dynamic shadows in outdoor scenarios, and therefore
it is good to have a local brightness compensation.

The di�erence minimization is always carried out between a synthesized
image and the current camera image. This way, the o�ine model serves as a
global reference and no drift will be accumulated as it would be the case when
one tracks from camera image to camera image. The rendering can be seen
as a �sh-eye compensation of the free-form surface for tracking. In controlled
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Figure 6.7: Correspondences between a rendered model view (left) and a cam-
era image (right). Corresponding regions are shown as small green squares
in the right image, while rejected features appear as red circles in the right
image. For classifying the tracks into success and failure (e.g. due to moving
persons) the X84 rule [Fusiello, 1999] based on the median SAD value of all
features is applied. Two blue squares show magni�ed regions in the rendered
image.

environments the standard KLT tracker can be used, which measures only 2D
o�sets for a region, since the prediction (the rendered image) is usually very
close. A comprehensive overview of this gradient based image registration
and KLT tracking can be found in [Baker and Matthews, 2004].

For outdoor sequences, which usually su�er from illumination changes
depending on time of day and weather, a light insensitive version of the KLT
should be used, which relaxes the image brightness constancy assumption
of the original algorithm to an a�ne brightness model: It is assumed that
illumination changes can locally be explained by a brightness scale and an
o�set that is constant for one local free-form surface. For a detailed overview
of tracking with appearance change compare [Baker et al., 2003].

One di�culty which has to be addressed is that the free-form surface
model contains holes, where no texture and no depth is present. For e�ciency
reasons only those free-form surfaces are used for tracking that project to a
completely �lled n× n window in the 2D view, where the window size n is a
parameter, which controls between tracking speed and accuracy, e.g. n = 9.
A di�erent solution would be to use a mask in the window and to ignore
unrendered pixels. This provides more �exibility in the features to be usable
but would mean an overhead in each KLT iteration step.

A free-form surface localization has converged when a position update
step is below dx pixels (e.g. dx = 0.1), which again controls between speed
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Figure 6.8: 2D positions of successfully registered free-form surfaces (right)
and the depth map from the used model view (left). From this data, each 2D
position is assigned a 3D model correspondence from the depth map, which
can then be fed into the pose estimation.

and accuracy. After convergence, the MAD for the whole patch is computed
and then the X84 rule as described in [Fusiello, 1999, Hampel et al., 2005]
can be applied to the set of all tracked free-form surface MADs. This is
a noise-adaptive, dynamic threshold, which rejects those correspondences
whose MAD is larger than l times the Median of all MADs for that image,
i.e. which behave much worse than the majority of correspondences. This
way, photometric outliers are removed and many occluded features, moving
persons or unmodeled objects are greedily rejected.

For the remaining (good) features 2D-3D correspondences from the patch
center in the image and the back-projected 3D point from the model (compare
�gure 6.8) are established. This is in contrast to the plenoptic approach
(cf. to [Adelson and Bergen, 1991]) for probabilistic camera tracking from
[Denzler et al., 2003, Heigl et al., 2000], which does not provide depth. Using
the approach of this section the rendered image is not simply scored as a
whole, but the 2D-3D correspondences provide information how to correct
the pose to make the rendered and the real image coincide, which is described
next.

Robust Pose Estimation

The resulting 2D-3D correspondences are then processed in a robust non-
linear pose estimator, which starts at the predicted pose and minimizes the
ray error for all 2D-3D correspondences. To limit the in�uence of single
remaining mismatches an M-Estimator with Huber [Zhang, 1997, Huber,
1964] error function h is applied. More precisely, the position xi and the
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covariance matrix Cxixi
from the KLT tracker in the original image are

transformed to a local ray x̂i and a covariance Ĉi, which is obtained through
an unscented transform[Julier and Uhlmann, 1997]. Now the Mahalanobis
distance between x̂i and the ray of the 3D point is minimized, where the
transformed covariance Ĉi of the tracked point de�nes the Mahalanobis error
metric. ∑

i

h
[
(x̂i − P̂ [p,X i])

T
Ĉ
−1

i (x̂i − P̂ [p,X i])
]
→ min (6.10)

The objective is the pose p that minimizes the sum of these distances for
all points. After convergence of the Levenberg-Marquardt minimization (cf.
[Zhang, 1997]) of the above error, the incidence test [McGlone, 2004] is used
to determine for each tracked surface whether it is an inlier or an outlier.
The outliers are removed and the optimization is performed again.

Looped (Iterative) Rendering

Once the pose is computed it is possible to render an updated �sh-eye image
from this optimized pose and perform the KLT step again. Ideally, all fea-
tures would already be at the correct positions and the real and the rendered
images would be identical. However, small o�sets due to only few or noisy
features from the previous iteration might still occur and can be exploited to
iterate towards an even better pose. If and how many iterations are needed
depends on the quality of the pose prediction and therefore mainly on the
speed and smoothness of camera movement and the speed of computation.
Within the camera movement the rotation is the most critical part because
at a certain distance to the scene fast rotations change the �sh-eye image
more drastically than fast translations.

At �rst sight it is conceivable that multiple rendering iterations might
have several advantages: Spurious tracking errors in high-frequency repetitive
patterns could be corrected, e.g. if the wrong brick or paving stone is matched
out of many. One might also wonder whether at a new rendering pass a new
free-form surface snaps in, which ties a previously uncertain degree of freedom
of the camera pose.

However, in practice this turned out to be a rather theoretical consider-
ation: If the prediction is really wrong, no feature will snap in at the �rst
iteration and another rendering pass will not help, because there is no up-
dated pose available. In [Köser et al., 2006a] it has been shown that no
signi�cant reduction of pose error could be observed when iterating more
than two or three times. If the prediction is already good and if performance
is an issue, tracking with fewer or even only one rendering iteration is feasible.
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Therefore the number of rendering iterations is a quality parameter, control-
ling between accuracy and tracking frame-rate. Interestingly, the prediction
quality improves automatically when tracking frame-rate increases because
pose di�erences become minor when images are taken frequently enough. An-
other way of improving the prediction is to use additional inertial or rotation
sensors[Chandaria et al., 2006].

6.3.3 System Evaluation

A quite natural and intuitive evaluation of a tracking system designed for
augmentation is to augment and see whether the visual impression is good,
which is however not objective. Therefore here synthetic image sequences
have been rendered from reconstructed models with real texture, where ex-
act ground truth pose information is available for quantitative evaluation.
Nevertheless, qualitatively it is shown that the system runs in real environ-
ments and that it copes with the di�culties usually not modeled in synthetic
data (moving persons, illumination e�ects,..).

As discussed earlier there are several parameters of the system that con-
trol between speed (frame-rate of tracking) and accuracy of the system, e.g.
accuracy of the model, convergence criterion of the KLT patch registration
or number of rendering passes. The focus here lies on the principles of the
overall system and on the evaluation of sensitivity and applicability to cer-
tain environments, while speci�c optimizations of well-known components
are less interesting and can be found in the literature, compare e.g. [Bleser
et al., 2006, Molton et al., 2004, Bleser et al., 2007] for implementations of
KLT and 2D-3D correspondence based pose estimation in real-time.

In the next sections several problems occurring in typical tracking appli-
cations are discussed and it is shown how the proposed system behaves in
presence of disturbances. First, the in�uence of the accuracy of the model
used for tracking is discussed, afterwards the model-based wide-angle track-
ing is compared to other standard tracking approaches. In the second part
of the evaluation, the absence of drift on long sequences and insensitivity to
lighting conditions, clutter and moving scene content as well as photometric
distortion of parts of the image is demonstrated on several image sequences
from outdoor and indoor (compare table 6.1).

Sensitivity to Model Accuracy

The accuracy of the pose estimation depends on the goodness of the model
used for tracking. Therefore, rendering speed and average pose estimation
accuracy is monitored (�gure 6.11) at varying resolutions of the triangle
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Scene Type Extent (m3) T R
Sofa rendered 5 × 4 × 2 1.5m 80◦

TV Studio real, indoor 6 × 4 × 6 3m 60◦

O�ce real, indoor 5 × 5 × 3 2m 60◦

Church real, outdoor 50 × 20 × 12 5m 50◦

School real, outdoor 40 × 20 × 10 5m 60◦

Table 6.1: Overview of tested scenarios: Reconstructed scene size as width x
depth x height and extent of camera translation (T) and rotation (R) in test
sequences.

Figure 6.9: Upper Row: Perspective view and depth map of the reconstructed
Sofa Scene, Bottom Row: Close view of full resolution mesh of the sofa region
(see box in upper left image): This mesh cannot be approximated well by
using just one or two planar patches because it is really free-form.
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mesh for tracking (�gure 6.10). As ground truth a model of a real living
room scene (compare table 6.1) with real textures as reconstructed by the
o�ine modeling part (see �gure 6.9) is used. The model is fused from four
perspective depth maps of the scene, consists of 1.2 million triangles with a
bounding box of about 5m × 4m × 2m. A sequence of 350 �sh-eye images
(140◦ �eld of view, camera translation about 1.5m, rotation in all directions,
where the vertical axis rotations dominates by up to 80◦) with ground truth
pose information has been synthesized for testing.

The number of triangles is reduced from about 1.200.000 down to 1.600
by a combination of depth map resolution reduction and quad tessellation
similar to what has been proposed in [Evers-Senne and Koch, 2003]. Some
of the meshes can be seen in �gure 6.10.

The main result of this evaluation is not surprising: With increasing
number of triangles rendering performance goes down; if the GPU resource
limit is reached, real-time tracking becomes infeasible. The pose estimation
error decreases about logarithmically with increasing number of triangles. In
the extreme case of only a few triangles the scene is actually represented by
planar patches, which turned out to be only usable as long as the underlying
scene is planar. Otherwise the rendering does not ful�ll the undistortion goal:
the rendered and the camera image look signi�cantly di�erent and cannot be
matched by the KLT tracker. Only those points are found that actually do
lie on planes and are approximated well. A fair tradeo� for this particular
scene is to choose about 100.000 triangles.

Comparison against other Algorithms

The proposed system has been compared using the Sofa scenario (compare
table 6.1) against a) incremental structure-from-motion using the same cam-
era with 140◦ FoV but no model and b) model-based tracking with a 40◦

FoV perspective camera with the same number of pixels and same number
of surfaces. The pose error is given as position (translational) error in cm
and orientation error in degree. The orientation error thereby incorporates
deviations in all three axes because it is taken from the axis-angle represen-
tation of the rotation between the ground truth camera and the estimated
camera. The sequence is run forward and backward, generating a total of 700
frames with image 1 and 700 at identical pose. The results in �gure 6.12 show
that the model-based �sh-eye tracking outperforms both other approaches.
The error is very low and constant over the complete sequence with average
position error of 0.3 cm and orientation error of 0.1◦.

The structure from motion algorithm a) has no prior model and generates
the model on the �y. Therefore, the average pose error is higher than with



6.3. TRACKING FREE-FORM SURFACE MODELS 159

Figure 6.10: Reduced Meshes (Number of triangles: Top Left: 318908,
Top Right: 87724, Center Left: 25616, Center Right: 6862), Bottom Row:
Ground Truth Fish-eye Image (left) and Photometric Di�erence (right) for a
6862 triangles sample view from meshes above
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Figure 6.11: Model detail in number of triangles. Left: Pure Rendering
Frame-rate, Right: Average Orientation and Position Error on Living Room
Sequence

the model. Scale was �xed so that the tracking can be compared with the
model-based approaches. Drift does not accumulate very much since all
features are visible in most images, however an error increase is observable
as the camera moves away from the initial position. A bundle adjustment,
which would clearly help, but which is not feasible in real-time applications,
has deliberately been left out. The average position error is about 2 cm, the
average orientation error 0.3◦.

The perspective model-based tracking b) on the other hand has di�cul-
ties in distinguishing between camera rotation and camera translation, which
might be the reason for the high correlation between orientation and transla-
tion error in �gure 6.12. Furthermore it does only see about 100 of the about
500 free-form surfaces in the model at a given time because of its limited
�eld of view. The errors are much higher with average position error 4 cm
and orientation error 0.8◦.

Absence of Drift

A very important aspect of the presented analysis-by-synthesis approach is
the absence of drift, which allows to track in�nitely long sequences inside of
the 3D model range. To prove the applicability of the method here a real
sequence can be used (see also �gure 6.6), which consists of 1400 images
of 1600 × 1200 pixels, and which were taken with a �sh-eye lens covering
a viewing angle of 185◦. The camera was moved hand-held and translated
approximately 6m sidewards while panning up to 90◦. The �lmed buildings
were up to 20m away and 12m in height. The camera path was reconstructed
according to [Bartczak et al., 2007] using the full �sh-eye images as explained
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Figure 6.12: Algorithm comparison on ground truth living room sequence
(350 images forward+backward). Top: Fish-eye Model Tracking, Center:
Fish-eye Structure From Motion, Bottom: Perspective Model Tracking (40◦

FoV), which produces the worst results, printed here with triple error range.
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Figure 6.13: Top: Perspective view onto reference model School from above
and extent of camera movement used for drift measurement. The camera is
going forward/backward from one end of this path to the other. It passes
the green middle camera, where the pose estimation is compared to previ-
ous and following passes (see table 6.2). Bottom: augmentation of model
view and real image using estimated parameters. The texture used for the
augmentation is the gradient magnitude of original texture, strong gradient
edges colored in red.

earlier. The resulting depth map was used to create a mesh yielding a 3D
model of the scene, which consists of 90303 triangles (compare �gure 6.13,
top).

Without ground-truth data, the veri�cation of the estimated camera path
is di�cult. One way to check for consistent model and camera path recon-
struction is to augment the model into a sequence. The bottom image of
�gure 6.13 shows an augmentation of the model rendered with the estimated
camera parameters. In order to provide an augmentation that is distinguish-
able from the background image, the texture of the model was replaced by
its gradient magnitude. While evaluating the model tracking, the di�erence
images between the original image and the rendered model view were moni-
tored. This qualitative evaluation showed that the observable tracking error
was in the range of one pixel.

In order to analyze potential accumulation of errors in pose estimation for
long sequences, 360 consecutive images of the real sequence were processed
forwards and backwards several times, starting at the middle of the sequence.
The central image position is reached eight times and compared to the �rst
pose, which should always be the same. Figure 6.13 shows the extent of
this path, which is approximately 2 meters to the left and to the right of
the middle camera (green, center of path). Looping through this sequence
resulted in 2160 images for tracking. Given the pose for the �rst (central)
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pass SfM Tracking Model Tracking
∆T ∆φ ∆T ∆φ

1 2.57 cm 0.098◦ 0.73 cm 0.047◦

2 1.92 cm 0.085◦ 0.82 cm 0.047◦

3 1.92 cm 0.085◦ 0.69 cm 0.046◦

4 2.79 cm 0.11◦ 0.73 cm 0.047◦

5 2.41 cm 0.11◦ 0.84 cm 0.048◦

6 1.06 cm 0.02◦ 0.68 cm 0.046◦

7 3.53 cm 0.13◦ 0.73 cm 0.047◦

8 3.22 cm 0.14◦ 0.81 cm 0.047◦

Table 6.2: Pose error evaluation for a looped image sequence, which passed
the image under inspection eight times. The SfM columns show the position
and orientation error using a structure from motion based tracking and how
pose estimation has drifted when passing this image. The model columns
show the avoidance of error accumulation when tracking is supported by a
model.

image, the camera poses for this �oscillating� sequence are estimated using
SfM tracking and model based tracking with 400 features for both. Model
based tracking uses only one rendering iteration.

Table 6.2 compares the error development at the middle image over con-
secutive passes of a looped sequence using tracking on �sh-eye images, but
without a model. Although the error is not constantly growing with each
pass, an error increase is visible. On the other hand the tracking error ob-
served using the model (last two columns) is con�ned and does not increase
over consecutive passes. This con�rms that the system does not drift. Fur-
thermore the pose error is smaller at all times when compared with the SfM
tracking.

Occlusion and Lighting

In another outdoor sequence, results in a really challenging scenario are pre-
sented: tracking in front of a church in a busy pedestrian precinct (compare
�gure 6.14 and 6.7 for the model creation process). Illumination changed
quite signi�cantly between model creation and tracking and even between
subsequent frames during tracking, because lots of clouds moved and let the
sun appear and disappear again. This does not only change the brightness
of the image but ampli�es local shadows and stresses relief e�ects. Further-
more, when using a �sh-eye lens, the sun is almost always in the camera
image, leading to blooming e�ects, corrupted image lines and optical ring
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re�ections within the lens.
Apart from the lighting, people moved in front of the camera even during

the reconstruction process. For visualization purposes online video has been
augmented with a transparent model, which shows only some edges of the
church as reference. It can be seen that the augmentation stays stable even
when persons move in the scene or when the light changes (compare sample
views in �gure 6.14). Even in the case where the CCD blooming e�ects
distort parts of the image, the pose can be estimated from the remaining
good free-form surfaces, because the subdivision of the model allows to track
each �feature� individually. The KLT residuum check already rejects the
blooming outliers.

Evaluation of Further Scenarios

The tracking system has been tested in additional scenarios (see also table
6.1), of which a brief overview is given in �gure 6.15.

As a qualitative evaluation, the sequences used during reconstruction have
been looped several times. In both scenarios, the pose error (compared to the
o�ine model) for the �rst image of the sequence is about the same as for all
its other occurrences in the sequence and does not systematically increase:TV
Studio: below 0.1◦ orientation and 1 cm translation error. O�ce: up to 0.2◦

orientation and 1.4 cm translation error. This shows that the system can
cope with these scenarios and does not drift. The average pose di�erence
with respect to the o�ine reconstruction of the O�ce sequence was 0.23◦

(σ = 0.12◦) orientation and 0.95 cm (σ = 0.54 cm) translation. On the TV
Studio sequence the orientation di�erence was 0.27◦ (σ = 0.16◦) orientation
and 4.1 cm (σ = 2.9 cm).

6.3.4 Discussion

A complete camera tracking system has been discussed, which �rst builds
a textured model from the environment and afterwards uses the model in
an analysis-by-synthesis approach for tracking. Initially, an automated reg-
istration is performed based on a database of robust features. Afterwards,
the graphics hardware is exploited to render a distortion-compensated and
perspectively warped model image with an approximate pose. Since this
compensates the e�ects of the lens and viewpoint, now full advantage can be
taken of the �sh-eye properties, which proved to be superior to perspective
cameras in tracking. It was shown that there is no drift accumulation over
time and therefore the system is well-suited to work on in�nitely long image
sequences. The accuracy of the model approximation should �t well the free-



6.3. TRACKING FREE-FORM SURFACE MODELS 165

Figure 6.14: Lighting and Moving Persons in the Church Sequence. Sample
images are augmented with an edge model only containing some yellow lines
as reference for visualization. Moving persons (bottom): The rectangle in the
lower image covers a horizontal �eld of view of more than 60 degrees, which
appears rather small due to the large �eld of view of the proposed system.
Light changes: Observe that the sun heavily degraded some of the images
(blooming, particularly in top image) and changes the local appearances of
some regions (e.g. the �oor in the center image). Compare �gure 6.7 for a
rendered view from the model.
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Figure 6.15: Example scenarios O�ce (left) and TV Studio (right), each
with sample image, perspective view of 3D model, rendered depth map and
rendered image (top to bottom). The approximate scene volumes are 5m ×
5m × 3m for the o�ce and 6m × 4m × 6m for the TV studio. The real
camera images can be calibrated reliably only up to a certain percentage(e.g.
90%) of their �eld of view, therefore the rendered images use only that smaller
�eld of view and the active area is smaller.
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form surfaces, since planar approximations of curved surfaces degrade the
accuracy. On current GPUs a model complexity of about 100.000 triangles
is feasible. The system is robust against outliers and drastic lighting changes
and works well even in challenging outdoor scenarios.
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Chapter 7

Conclusion

7.1 Summary

During the last ten years, substantial advances in solving the correspon-
dence problem for images from signi�cantly di�erent viewpoints have been
achieved. As a result, nowadays local image regions can automatically be
determined that correspond to approximately a�nely warped versions in an-
other image. As a consequence, the relative rotation, shear and scale between
these regions became implicitly available. In geometric estimation however,
this information has mostly been disregarded and the region correspondence
was used as a simple center point correspondence only.

Therefore, the main contribution of this thesis is the introduction and
mathematical derivation of a geometric primitive called the local a�ne frame
correspondence. Such a correspondence between two images or an image and
a 3D surface augments the traditional point-to-point relation with a local,
linear warp of the surrounding textures. This local, linear warp is actually the
derivative of the image to image transformation at the feature position and
imposes constraints, when the Taylor representation of the transformation in
Euclidean 2D space is inspected. In many situations the warp information
is readily available or would be easy to obtain. It has been shown that
conic correspondences can be seen as a squared formulation of this approach,
while at the same time the LAF correspondence is more powerful in that it
carries more information. Curvature of lines on the other hand is related to
a 1D version (hence providing less constraints). Only triplets of points are
geometrically comparable and can be understood as a sampling of the local
a�ne frame.

Although the base local a�ne frame concept has been used in matching
to correct for local distortions for quite some time, no algorithms existed for
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explicit geometric exploitation of the local a�ne frame other than in non-
linear optimization or by approximating the local a�ne frame with a triplet
of points. In this thesis it has been shown, how the correspondence can be
exploited to express di�erential constraints onto the global transformation
using exemplary problems of homography, pose and normal estimation, which
are important parts in scene reconstruction and photogrammetry. It has
also been shown how a local a�ne frame is transformed using an arbitrary
analytic and well-linearizable function into a local a�ne frame in another
image, allowing to reason with local a�ne frames in a similar way as with
simple points.

Due to the power of the primitive used, less correspondences than previ-
ously necessary have to be used for estimating the inspected transformations.
This is particularly interesting in settings with few data, with manual user
interaction, or in settings with high fractions of outliers, because in this case
the complexity often depends exponentially on the number of samples re-
quired to construct a minimal solution. Furthermore, it has been shown that
the novel primitive is numerically stable in various applications. In sensitiv-
ity analyses and practical evaluations it turned out that for reasonable noise
assumptions of today's consumer cameras, all of the inspected estimation
problems are remarkably stable. In some cases the sampling into three point
correspondences in practice yielded comparable or slightly better results as
with the di�erential constraints, particularly when simple algorithms like the
DLT are used. On the other hand, the parameterization and estimation of
the conjugate rotation is essentially based upon the di�erential constraint
and no algorithm is known to estimate it from three point pairs so far. Us-
ing the LAF correspondence concept, also the number of degrees of freedom
for the conjugate rotation (the in�nite homography for constant calibration)
and the �rst minimal parameterization have been discovered. Additionally,
the �rst algorithm to estimate a general conjugate rotation has been pro-
posed. Furthermore, it has been shown that pose estimation is possible from
a single feature correspondence. In the same context it could be shown that
the di�erential formulation exploiting a LAF correspondence is better-suited
for small solid angles than the classical spatial resection based upon three
points. This result does not only hold for exact local a�ne frames but also
for LAFs computed from triplets of close points, because their proximity can
create numerical di�culties in the traditional resection formulation.

A further useful property of the LAF correspondence is that it is appli-
cable to non-ideal perspective cameras, too, as has been shown e.g. in pose
estimation with radial or �sh-eye distortion. Furthermore, since a model
for uncertainty handling has been proposed, the novel primitive can also be
applied as an uncertain observation in maximum-likelihood estimation or
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non-linear optimization like bundle adjustment and in frameworks for statis-
tical testing, e.g. to detect outliers. However, the described applications are
only exemplary demonstrations. The LAF correspondence technique might
as well be used for self-calibration, estimating camera distortion, in articu-
lated motion tracking, or to compute other multiple view geometry, which
leaves a large area for future research.

In the �nal part of this thesis a system has been presented that extended
the sparse 2D representation of local features to a 3D model of curved sur-
faces. Here, a complete framework for tracking a camera in a mainly static,
textured scene has been proposed. The system is marker-less, drift-free and
robust against lighting changes and occlusion and is therefore suitable to
work on sites where no special markers can be set up and in in�nitely long
sequences without drift. It exploits building a model using structure-from-
motion techniques to form a dense, textured three-dimensional model of the
scene in which tracking is desired later on. In an online phase, initializa-
tion can be achieved using robust techniques on a feature database, where
descriptors are projected to a small, discriminative subspace using methods
from pattern recognition. Once the camera pose is known approximately,
the focus changes to exact, jitter-free tracking. Herefore, it has been shown
that using as much 3D surface information as possible improves the accuracy,
and therefore tracking is performed using an analysis-by-synthesis approach
on the GPU exploiting free-form surfaces, which perform better than locally
planar patches because they are a better representation oft the real world.

To summarize, it can be argued that the LAF correspondences are well-
suited when as much information has to be extracted from a few image
correspondences as possible and to �nd initial solutions. They can also be
used to stabilize and optimize the estimates even using maximum likelihood
estimation. However, usually only a sparse set of a�ne features exist in
an image and no occlusion or connection information in 3D space is given
in this model. If on the other hand three-dimensional information about
the scene is available, e.g. the shape of curved surfaces within the scene,
exploiting this additional information is useful, particularly when the surfaces
cannot be represented well by planes. Although the free-form surfaces are
more complex to handle in equations, they are well-suited to be processed in
analysis-by-synthesis approaches using the graphics hardware.

7.2 Future Work

A natural question arising from the proposed LAF correspondence formu-
lation is whether it would be possible to use also the second order Taylor
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approximation of a function. The major di�culties would be to obtain the
second derivatives of the transformation from the image data (a larger region
would be required) and to solve the equation system obtained from the sec-
ond derivatives. Here, also an automatic model-selection approach would be
interesting, which determines whether second derivatives are observable in
the region and then decides whether the �rst order or a higher order model
should be used.

Another interesting topic of future research is the modeling of asymmetric
relations for local a�ne frames: in homography estimation, the one-to-one
correspondence of a�ne features can now be expressed by the LAF corre-
spondence constraint through the linearization of the warp, but a subject to
future research must be how to extend this concept to one-to-many relations
(analogous to point-to-line relations), which appear for instance in epipolar
geometry estimation. For fundamental matrix estimation, clearly multiple
features would be required. A promising approach could be to determine a
manifold of homographies that is compatible with each LAF correspondence,
and then to �nd an epipolar geometry that is consistent with at least one
homography of each LAF correspondence. Another solution would be to �nd
another primitive that mimics the epipolar line and an adapted representa-
tion of the fundamental matrix: a set of local a�ne frames in the �rst image,
derived from (and consistent with) a given epipolar geometry and a local
a�ne frame in the other image. This would allow for a full structure-from-
motion system based solely upon local a�ne frames.



Appendix A

Analysis

A.1 Taylor Series

Continuous functions f : R→ R which are arbitrarily often di�erentiable in
a neighborhood of a position a can be represented in a neighborhood of a
as a sum of a power series, called the Taylor-series representation Tf (cf. to
[Bronstein et al., 1999, p. 383]):

T
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being an upper bound of the error, when only n power series elements are
considered. In a neighborhood of a (de�ned by the convergence radius) R(n)

vanishes as n goes to in�nity. For �nite n however, T(n)
f is called the nth order

Taylor approximation with residual R(n). Whenever the index (n) is left out,
n = 1 shall be assumed.

If a function with 2-dimensional domain (g : R2 → R) is inspected, the
derivatives in both directions must be considered. For the sake of clarity this
is written in operator style here (cf. to [Bronstein et al., 1999, p. 411]):
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173



174 APPENDIX A. ANALYSIS

Finally, if also the codomain has more than one dimension, i.e. if a func-
tion h maps to a d-dimensional codomain

h : R2 → Rd : h [x] =

 h1 [x]
...

hd [x]

 (A.4)

the above concept may be generalized to multiple codomain dimensions by
representing each of the codomain dimensions hi separately by its own series
and then combining these series together.
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Of particular interest for this thesis is the �rst order Taylor approximation
(an a�ne function, also called the local linearization) of a function hmapping
from R2 to R2:

Th [x] = h [a] +
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where the residuals Ri depend on the second derivatives:

R =

(
R1
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)
= h [x]− Th [x] (A.7)

with
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Under the assumption that all the second derivatives have their suprema at
as, this can be written more e�ciently using the Hessian matrix of hi
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For functions with locally constant second derivative, as can be chosen ar-
bitrarily between a and x, for locally monotonic second derivatives as must
be set either to x or a, depending on which interval border has a larger ab-
solute value of second derivative. For smooth functions and small intervals
the selection of as has no big impact on the error bound.

A.2 Homographies in P1: Rational Functions

in R1

A homography is a linear mapping in projective space. In this section its
analogon in Euclidean space is inspected, which is a rational function. For
simplicity of presentation, here only the 1D case is shown: let H be a ho-
mography mapping points from P1 to P1:

y = Hx det [H] 6= 0 (A.11)

The additional condition on the determinant states that only regular homo-
graphies are considered here, which have full rank. Then, the problem can be
transferred to Euclidean space (except for the ideal points), where it appears
as:

y = euc [y] = H [euc [x]] = H [x] (A.12)

When H consists of the two rows hT
1 and hT

2 ,
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(A.13)

H is actually a rational function of x:

y = euc [y] =
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1 x

hT
2 x

=
h11x+ h12

h21x+ h22

(A.14)
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This rational function is linear (more exact: a�ne) if the denominator does
not depend on x and if it does not vanish, i.e. if euc [h2] = 0. In projective
space P1, such a�ne transformations do not change the point at in�nity, i.e.
they map in�nity to in�nity. If on the other hand H is truly projective, a
�nite point (the pre-image of the point at in�nity or the pole) is mapped
to in�nity. The standard tools for characterizing a curve in calculus can be
applied to the rational functions in Euclidean space. There can only be a
pole xp if the denominator vanishes and the enumerator does not1:

hT
2 xp = 0 , hT

1 xp 6= 0 (A.15)

and, if it exists, this pole is at

xp = −h22

h21

(A.16)

The rational function is further characterized by its limits at in�nity

lim
x→∞
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H [x] =
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(A.17)

and by its zero crossing, which exists if h11 6= 0:
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Furthermore, H's derivative is given by
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At a critical point, the �rst derivative must be zero, which can only happen
when the enumerator vanishes. This however, may only happen if the deter-
minant of H is zero, which would imply a degenerate homography, mapping
everything to the same point. Consequently, a regular homography does not
have any critical points. Therefore, a sketch of a 1D homography can be
given as seen in �gure A.1.

The homography's second derivative, which represents the local change
of the �rst derivative, can be derived from equation (A.19):

∂2H

∂x2
=
−2h21det [H]

(hT
2 x)3

(A.20)

1If denominator and enumerator both vanish the point is no longer in projective space.
This can only happen for degenerate homographies, for which det [H] = 0 holds and which
are not considered here.
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Figure A.1: Sketch of a 1D homography in euclidean space.

Using the second derivative, it is easy to see that the �rst derivative
changes strongly near the pole but only gently far away. Therefore, the
Taylor approximation using a �xed size environment represents the function
better, if the linearization point is far from the pole (see �gure A.2).

This becomes also clear when the error of the Taylor approximation is
inspected: According to Taylor's theorem, the error is bounded by a value
proportional to the absolute value of the supremum of the second derivative in
the region (compare equation (A.10)). Assuming that x is in the convergence
radius around the linearization point at a, the error at x is bounded by

|R| ≤ (a− x)2 max

[∥∥∥∥ h21det [H]

(h21x+ h22)3

∥∥∥∥ ,∥∥∥∥ h21det [H]

(h21a+ h22)3

∥∥∥∥] (A.21)

This provides an estimate on the maximum di�erence between the a�ne
transform using the linearization point a and the true homography.
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Figure A.2: Two local linearizations (�rst order Taylor approximation) of
homography: The (green) approximation is good at xg, while the lineariza-
tion is less good (red) at xb because in the second case the derivative of the
function changes more heavily in the interval.



Appendix B

Probability Theory

B.1 Basic Concepts

B.1.1 Cumulative Distribution and Density

The distribution of a continuous random variable X is characterized by its
cumulative distribution function (cdf), which de�nes the probability that the
random variable takes on a value less than some threshold x:

cdf [x] = P (X ≤ x) x ∈ R (B.1)

In this thesis, only continuously di�erentiable cumulative distribution func-
tions are considered. The derivative of this function is called the probability
density function (pdf):

pdf [x] =
∂cdf

∂x
(B.2)

Consequently, integrating the pdf over an interval yields the probability that
the random variable takes on a value from that interval, so that∫ ∞

−∞
pdf [x] = 1 (B.3)

B.1.2 Moments

The moment representation for probability distributions can be thought of
being analogous to the Taylor approximation of functions. The more higher
moments exist and are incorporated into the approximation of a probability
density function (pdf), the better the estimated pdf approximates the true
pdf. In this thesis often unimodal distributions are used, i.e. pdfs which
do not have multiple local maxima. Given only the �rst two moments of
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such a pdf, the Gaussian distribution has the maximum entropy among all
imaginable pdfs [Bishop, 2006, p.54]). In a sense this means that given the
�rst two moments and no further information, assuming a Gaussian distri-
bution is less biased than any arbitrarily chosen other distribution, because
it provides the most surprise or uncertainty about measurements among all
such distributions (maximum entropy principle [Jaynes, 1957]). This is the
motivation to model measurements as normally-distributed if nothing bet-
ter is known, which will be followed if not stated contrarily. Given multiple
measurements on the other hand, it can be shown that the Gaussian distri-
bution with maximum likelihood (cf. to [Bishop, 2006, p.23]) is the one with
centered at the mean with standard deviation σ. These concept can also be
applied to multiple dimensions, where a measurement corresponds to a pdf
with a mean and a covariance matrix. In the remainder of this thesis this
will also be called a measurement with uncertainty.

Probability distributions can be characterized by moments, e.g. the ex-
pectation value E for a random variable is the �rst moment of its distribution
(cf. to [Bronstein et al., 1999, p.751]):

E [X] =

∫ ∞
−∞

pdf [x]xdx = µ (B.4)

The higher (nth) moments are computed as

E [Xn] =

∫ ∞
−∞

pdf [x]xndx = (B.5)

The higher moments are often more useful if they are computed with respect
to the expectation value. This is then called the nth central moment:

E [(X − µ)n] =

∫ ∞
−∞

pdf [x](x− µ)ndx (B.6)

In the one-dimensional case the second central moment σ2

E
[
(X − µ)2

]
=

∫ ∞
−∞

pdf [x](x− µ)2dx = σ2 (B.7)

is also called the variance of X and its root σ is called the standard deviation.
In n dimensions, the second central moment is an n×n matrix called the

covariance matrix ΣXX

ΣXX =

∫ ∞
−∞

pdf [x](x− µ)(x− µ)Tdx (B.8)
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B.1.3 Mahalanobis Distance

The L2-norm in Euclidean vector space Rn measures distances between points
x and y as

||x− y||2 =

√∑
i=1..n

(xi − yi)2 =

√
(x− y)T (x− y) (B.9)

Let this space be transformed by a linear transformation L, such that

x̂ = Lx (B.10)

and
ŷ = Ly (B.11)

The distance of the original points expressed in the new space is therefore

||x− y||2 =

√
(x− y)T (x− y) =

√
(x̂− ŷ)T L−TL−1 (x̂− ŷ) (B.12)

If the transformation L is replaced using a matrix Σ, so that

Σ−1 = L−TL−1 (B.13)

then the L2-norm in the original space can be computed in the transformed
space as

||x− y||2 =

√
(x̂− ŷ)T Σ−1 (x̂− ŷ) = ||x̂− ŷ||Σ (B.14)

In the transformed space, this is called the Mahalanobis distance of x̂ and ŷ.
As it can be seen, the Euclidean distance is a special case of the Mahalanobis
distance, where ΣXX = In×n The Mahalanobis distance is important in statis-
tical applications, where it takes into account correlations between the data,
or to compute distances in (anisotropically) scaled coordinate systems.

B.2 Distributions

B.2.1 Normal Distribution

A very important probability distribution is the normal distribution, also
called Gaussian distribution. One important property of the normal dis-
tribution is that given the �rst two moments the normal distribution has
the maximum entropy of all probability distributions [Jaynes, 1957]. Conse-
quently, given no further information than the �rst two moments the normal
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distribution can be thought of the least biased assumption for the distribu-
tion. It is de�ned through its probability density function

pdfG [x] =
(
(2π)dim[x]det [Σxx]

)− 1
2 exp

[
−1

2
(x− µ)T Σ−1

xx (x− µ)

]
(B.15)

where the (multidimensional) mean µ (the �rst moment) and the covariance
matrix Σxx (the second central moment) determine the position and shape
of the distribution. In 2D this is

pdfG,2D [x] =
(
4π2det [Σxx]

)− 1
2 exp

[
−1

2
(x− µ)TΣ−1

xx(x− µ)

]
(B.16)

and in 1D it simpli�es to

pdfG,1D [x] =
1√
2πσ

exp

[
(x− µ)2

−2σ2

]
(B.17)

The interval [µ− σ;µ+ σ] is called the standard con�dence region. In
multiple dimensions, the corresponding region de�ned by the points x that
ful�ll

(x− µ)TΣ−1
xx(x− µ) ≤ 1 (B.18)

forms a hyperellipsoid, a special kind of quadric. The probability that a mea-
surement falls inside such a hyper-ellipsoid can be computed by integrating
the density across the region. For 1D it is approximately 68% but for higher
dimensions this fraction quickly gets much smaller.

Di�erence/Sum of Two Uncorrelated Gaussians

The sum or the di�erence of two normally distributed random variables that
are uncorrelated is also normally distributed. Let x1 be normally distributed
with mean µ1 and covariance Σ1 and let x2 be normally distributed with
mean µ2 and covariance Σ2. Then a joint representation for both vectors can
be made in a double size vector

x12 =

(
x1

x2

)
(B.19)

which is also normally distributed, with covariance

Σ12 =

(
Σ1

Σ2

)
(B.20)

Then the sum of both
x = x1 + x2 (B.21)
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can also be written as a linear operation

x = Sx12 (B.22)

where

S =

 1 1
. . . . . .

1 1

 (B.23)

For linear functions, Gaussian error propagation applies and therefore

Σxx = SΣ12S
T (B.24)

which is simply the componentwise sum of the original covariances. The same
is true for the di�erence of two normally distributed uncorrelated variables.

B.2.2 χ2 distribution

The χ2-distribution is a very important probability distribution for statistical
testing. It takes the form

pdfχ2,n [x] =
x(n/2− 1)e−y/2

2n/2Γ
(
n
2

) (B.25)

where Γ represents the Gamma function and n is a parameter for the number
of degrees of freedom (cf. to [McGlone, 2004, p.64]). The sum of n indepen-
dent, squared random variables Xi that are normally distributed with zero
mean and variance 1 is χ2-distributed.

pdfX2

[∑
i

X2
i

]
= pdfχ2,n [x] (B.26)

B.3 Statistical Testing

In several applications the question arises, whether some measured data sup-
port an assumption, the so-called null hypothesis, or whether the null hy-
pothesis is unlikely given the data ([McGlone, 2004, p.77]).

B.3.1 Incidence Test

As a consequence from equation (B.26) it follows that the squared Maha-
lanobis distance (equation (B.14)) of a sample from a zero-mean Gaussian to
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the origin is also χ2-distributed. Under the assumption that a Gaussian with
given covariance Σ and zero mean is given, the probability Pt,Σ of obtaining a
sample with a squared Mahalanobis distance larger than t can be computed
as

Pt,Σ =

∫ ∞
t

pdfχ2,n [x]dx (B.27)

If, for some t0, this probability Pt0,Σ is very small, i.e. smaller than some
prede�ned signi�cance level Psig, then it is unlikely to draw a sample this
far from the mean of the given distribution. In this case there is statistical
evidence that the base hypothesis can be rejected, i.e. here that the sample
is drawn from a zero mean Gaussian with covariance Σ. The smaller the
threshold Psig is set, the more signi�cant the test becomes, i.e. the more
likely it becomes that a rejected hypothesis was actually wrong. However,
this happens at the cost of reduced sensitivity and usually a tradeo� has to
be found. The testing scheme can for instance be exploited to detect outliers
in sets of feature correspondences, given a geometrical model for veri�cation:
Choosing a large value for Psig will detect most outliers at the risk of also
misclassifying some good correspondences as outliers. Choosing a small value
on the other hand will allow most of the inliers to pass the test at the risk
of overlooking some of the outliers.

B.4 Uncertainty Propagation

When dealing with probability distributions for uncertain observations and
parameters, often the �rst two moments are used to characterize the distri-
bution of the related random variables in practice. Sometimes these variables
are transformed by a function and it is necessary to reason about the mo-
ments of the transformed distribution. Here, particularly the shape and the
size of the covariance matrix is interesting. This is the topic of uncertainty
propagation or error propagaton.

B.4.1 Linear Error Propagation

Given a probability distribution for a random variable X, which has mean
µx and covariance Σxx, an a�ne transformation of the variables

x̂ = Lx+ b (B.28)

will (cf. to [McGlone, 2004, p. 71]) result in a X̂ to be distributed so that

µx̂ = Lµx + b (B.29)
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and
Σx̂x̂ = LΣxxL

T (B.30)

This is called linear error propagation. In case X is transformed by a non-
linear function T that is locally analytic and su�ciently smooth, then the
�rst order Taylor approximation of T can be used to locally linearize the
non-linear function. This local linearization can then be exploited to obtain
an approximation of the second moment in the transformed space:

Σx̂x̂ ≈
∂T

∂x
ΣT
xx

∂T

∂x

T

(B.31)

The quality of the approximation depends on the local linearity of the non-
linear function.

B.4.2 Monte Carlo Methods

Another way of propagating uncertainty is using so-called Monte-Carlo meth-
ods [Metropolis and Ulam, 1949]. Here, knowledge about the underlying
distribution is required. This distribution is then numerically sampled at
a large number l of positions xi: these samples are then transferred using
some function f and the moments µ̂ and Σx̂x̂ of the transferred samples are
computed:

µ̂ =
1

l

∑
i

f [xi] (B.32)

Σx̂x̂ =
1

l − 1

∑
i

(
(f [xi]− µ̂) (f [xi]− µ̂)T

)
(B.33)

The more samples are used the better the approximation of the transformed
moments can become. However, using more samples also leads to an in-
creased computational burden. Particularly when high-dimensional pdfs are
considered Monte-Carlo methods quickly become slow or even computation-
ally infeasible.

B.4.3 Unscented Transform

A more e�cient approximation of uncertainty propagation has been proposed
by Julier and Uhlmann [1997, 2002], the unscented transform. Here, the
original distribution is assumed to be normally-distributed and is sampled at
a few, well-de�ned positions, namely where the principal axes of the normal
distribution have a certain Mahalanobis distance λu to the center, and at the
center. These samples are then transferred using the nonlinear function, and
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based on the transferred samples the transferred covariance is estimated in
the same way as in the Monte-Carlo method. If the transforming function is
a�ne, this yields the same results as linear error propagation. Otherwise, if
the parameter λu is chosen very small, the system behaves more like linear
error propagation, or if the parameter is chosen larger, the moments are
transferred based on a larger surrounding of the mean. In any case, since a
�xed number of samples is used, it is computationally very e�cient.



Appendix C

Robust Estimation

C.1 Robust Estimation

In large parts of this thesis, observations in one or two images will be ex-
ploited to reason about the scene or the camera. Often, such observations
are not perfect but contain certain sources of error or distortion.

C.1.1 Observations and Uncertainty

When observing the real world, measurements can only be obtained with a
�nite precision due to physical limits in sensors, digitization and transmis-
sion, and representation as well as other sources of noise. In this case the
measured value is actually not the true value. However, for stable systems,
small disturbances of the assumed conditions will only result in small changes
of the outcome. Therefore, if the measurement method is designed well, it is
possible to reason about the real world based upon measured values. Often,
not only one measurement is given, but the experiment is repeated multiple
times or contains redundancy. In this case, the mean and the scatter of the
measurement can serve as the �rst two moments (cf. to [McGlone, 2004, p.
65]) of a probability distribution for the true value. Therefore, for measure-
ments the methods of probability theory presented in appendix B can be
applied.

C.1.2 Least Squares and Covariance Estimation

In this section it is assumed that there is a linear function f : Rn → Rm,
which depends on some parameters p ∈ Rn to compute an observation ô ∈
Rm, (n > m) according to:

ô = f(p) (C.1)
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If o is now a normally distributed random variable with mean ô and covari-
ance Σoo, given some measurement õ from this distribution, the maximum
likelihood estimate for p is (cf. to [McGlone, 2004, p. 84]):

p̂ =

(
∂f

∂p

T

Σ−1
oo
∂f

∂p

)−1
∂f

∂p

T

Σ−1
ooõ (C.2)

The uncertainty of the solution can be obtained through error propagation
(see section B.4) as described in the following.

C.1.3 Covariance Estimation

Equation C.2 showed how to obtain an estimate for a parameter based on
uncertain measurement data. Also an estimate for the uncertainty of the
parameters can be obtained. First the residual vector r is de�ned as

r = f(p̂)− õ (C.3)

and the reference variance σ2
0 is computed as

σ2
0 =

rTΣoor

n−m
(C.4)

where n is the number of observations and m is the number of the degrees
of freedom, i.e. (n −m) is a measure of redundancy ([McGlone, 2004, 85]).
The estimated covariance for the estimated parameters is then

Σ̂pp = σ2
0

(
∂f

∂p

T

Σ−1
oo
∂f

∂p

)−1

(C.5)

C.1.4 Newton-like methods

In the previous section only linear functions f were considered. This section
now extends the method to non-linear functions that are represented well
by a low order Taylor approximation. In case a parameter prediction p̃ is
given, f can then locally be approximated at p̃ and a parameter update
can be computed yielding the next prediction. This scheme can be run in
an iterative fashion minimizing a positive error function err [p]. A typical
convex error function is the reference variance (C.4), because of its quadratic
dependence on the residuals sometimes also called a quadratic error function.
Methods minimizing a function in this way are called Newton-like functions
in the following:

p̂ = argminperr [p], err [p] = σ2
0 (C.6)
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Direction of Steepest Descent

Probably the simplest method to locally optimize err is a method called
gradient descent. Here, a parameter update onto the prediction is simply
obtained by using the Jacobian of the function at the predicted parameters:

∆p =
1

λ

∂f

∂p
(C.7)

This means that a step is taken in direction of steepest descent of the function.
However, the step size parameter λ must be provided appropriately. If a too
small step is chosen, convergence is very slow. If a step is taken larger than
the region of approximate local linearity, the method may not converge to
the local minimum. Often, several values are tried for λ and a step is only
taken if the error function improves. The advantage of steepest descent is
that singular Jacobians of the error function are supported.

Newton's method and Gauss-Newton

An optimization method avoiding speci�cation of a step size parameter is the
Gauss-Newton algorithm. Here, the function f is replaced by its �rst order
Taylor approximation. In this case the error function σ2

0(p) is quadratic in
p and the minimum can directly be obtained in analogy to the linear case of
equation (C.2):

∆p =

(
∂f

∂p

T

Σ−1
oo
∂f

∂p

)−1
∂f

∂p

T

Σ−1
oor̃ (C.8)

Sometimes the Taylor approximation is only valid very locally and a large
step of the algorithm may leave the local minimum and lead to divergence.
The method can therefore also be combined with a line search technique,
which tries di�erent steps 1

λ
∆p and takes a step only if the error function

improves. As the inverse Jacobian is computed Gauss-Newton requires the
Jacobian to be non-singular.

Levenberg-Marquardt

An automatic way of handling the λ of the two previous sections is used
in the Levenberg-Marquardt algorithm (cf. to [Press et al., 1992, pp. 681]).
The Gauss-Newton step of the previous section exploits a second order Taylor
approximation of the error function to directly jump to the minimum. The
�rst order Taylor approximation of the error function on the other hand
carries information about the direction in which the error function decreases
if an in�nitesimally small step is taken. The Levenberg-Marquardt method
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now blends between Gauss-Newton and Steepest Descent by monitoring a
weight. Initially a Gauss-Newton step is computed. If the error function
increases the step size is reduced and a new step is proposed more towards
the direction of steepest descent. This is repeated until the error function
decreases. If a step is accepted, then the next step is started with an increased
step size. Di�erent strategies exist for the actual implementation and step
handling [Hartley and Zisserman, 2004], but in this thesis the following step
computation rule is used

∆p =

(
∂f

∂p

T

Σ−1
oo
∂f

∂p
+ λId×d

)−1
∂f

∂p

T

Σ−1
oor̃ (C.9)

where d is the dimension of p. This way Levenberg-Marquardt has the advan-
tage of fast convergence where the Gauss-Newton assumptions are ful�lled
but slows down in regions with higher non-linearity. As an additional bene�t
it works even if the Jacobian is singular.

C.1.5 Gross Errors and Breakdown Point

The previous sections dealt with di�erent methods to estimate parameters
from noisy measurements. The basic assumption of these techniques was
however, that the pdfs of the observations are close to Gaussian with known
covariance. This solves the problem of measurement uncertainty and inac-
curacy. In real data however, there are often measurements which do not
conform to this type of distribution because their deviation from the ideal
model is not due to small inaccuracies but results from other sources such as
relating totally wrong entities (mis-match). Such measurements are called
outliers, because it is highly unlikely that they stem from a Gaussian distri-
bution. For standard least-squares methods it is obvious that one can always
disturb a single observation so that the solution will be arbitrarily far from
the true solution. The maximum fraction of data for which this can not hap-
pen is called the breakdown-point of an estimator (cf. to [Hampel, 1971]).
Consequently, least-squares has a break-down point of 0%. Accordingly, the
Newton-like methods which do not monitor improvement of the error func-
tion also have a breakdown-point of 0%. In presence of a single (arbitrarily
bad) outlier those methods that do monitor will in practice not �nd any good
step, thus they can also be considered to have a breakdown-point of 0%.

C.1.6 Robust Error Functions

The reason, why least-squares is so susceptible to outliers is its quadratic
error function. From equation (C.2) it can be seen that the residuals have a
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quadratic weight in the computation of the step and therefore large residuals
dominate small ones. This observation led to the introduction of robust
error functions [Hampel et al., 2005]. The idea is that above a certain outlier
threshold σi the in�uence of a residual does no longer increase quadratically.
A representatives of such a function is for example the Huber function [Huber,
1964]. In this thesis the Huber error function continues di�erentiably and
linearly at 3σ:

errhuber [r] = Σi<n

{
6
σ
|ri| − 9 if r2

i /σ
2
ii > 32

r2
i /σ

2
ii otherwise

(C.10)

While such functions are more robust in the presence of outliers, they
require an initial prediction close to the optimum. Such initial values have
to be obtained by previous knowledge or a direct algorithm, like typical least
squares or linear solvers. If only a single outlier is in the data there are simple
testing strategies to �nd it, for up to a few outliers reweighted least squares
techniques exist [Scales and Gersztenkorn, 1988], where the inverse residual
is used as a weight for the next iteration, but these strategies also have a
breakdown point close to zero. For higher outlier fractions also the least
median squares concept exists [Rousseeuw, 1984], which expects more than
half of the data to be inliers and therefore has a breakdown point of 50%.
Probably the most successfull robust methods in automated correspondence-
based estimation is the RANSAC family, which will be described in the next
section.

C.1.7 RANSAC-like methods

When a signi�cant fraction of outliers is present within the data and no
a priori knowledge about the parameters is available, one approach is to
generate lots of solution hypotheses from small subsets of the data using
unrobust estimators and classify the data into inliers and outliers according
to each hypothesis. If one of the small subsets was outlier-free, the obtained
solution should provide a consensus for all inliers. This approach called
RANSAC was published in 1981 by Fishler and Bolles [Fischler and Bolles,
1981].

Formally, it is based on the assumption that the measurements can be
divided into a fraction p of inliers and 1−p of outliers and that this fraction is
known approximately beforehand. Then, a minimal subset from the data is
exploited to construct a solution hypothesis. Minimal means, that all degrees
of freedom of the model can be determined but that there should be no
redundancy in the estimate in order to limit the number m of measurements
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the hypothesis is based upon. Then the probability of picking a set containing
only inliers is:

P (ALL-INLIER-SET) = pm (C.11)

As can be seen the probability that one set is an all-inlier-set decreases ex-
ponentially with m and therefore m should be chosen as small as possible.
If now s times a minimal set is sampled from the data, the probability of
obtaining at least one all-inlier-set increases with s:

P (ALL-INLIER-SET-MULTIPLE-TRIALS) = 1− (1− (pm))s (C.12)

This can be solved for s to obtain the number of trials required so that an
all-inlier-set is picked with at least 99%:

s =
−2

log10 [1− pm]
(C.13)

For each of the sampled sets now a hypothesis is generated, and all mea-
surements are classi�ed as inliers or outliers according to this hypothesis.
Based upon the inliers of a hypothesis, this hypothesis may be re�ned to
obtain an improved hypothesis. The hypothesis with the highest number
of inliers is then the estimated solution. Furthermore, the partitioning into
inliers and outliers can be exploited for subsequent Newton-like re�nement.
If the outliers are statistically independent, so that they do not agree on a
"wrong" parameter set, RANSAC has a breakdown point of even more than
50%, although the average run-time increases drastically with the fraction of
outliers.

Since the initial RANSAC-publication several improvements, such as the
Bayesian-model motivated MLESAC [Torr and Zisserman, 2000] or the QDEGSAC
algorithm [Frahm and Pollefeys, 2006] for quasi-degenerate data have been
proposed, however, the basic idea is the same. Whenever RANSAC is used
in the following, a RANSAC-like algorithm, which uses the same principles
is meant: RANSAC is a parameter estimation technique, which �nds a set of
parameters which is optimal according to an error function or on which the
most measurements agree. In that sense it is related to Hough transform(cf.
to [Jähne, 2005, p. 482]) or mode estimation for probability density functions
[Bishop, 2006]. The idea is very simple: Given a set of data that includes
gross errors, synthesize a hypothesis from as few samples as possible (a min-
imal set) and score the hypothesis. Given the approximate fraction of gross
errors (e.g. 20%) the probability to select a minimal set without gross errors
can be computed. Now repeat generating hypotheses and scoring them until
an all-inlier set has been chosen with a high probability (e.g. 99%) or the hy-
pothesis yields a su�cient score. After termination return the parameter set
with the highest score and classify all measurements into inliers and outliers.
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Source Code

D.1 Conjugate Rotation Parameterization

In section 5.2.2 a parameterization has been proposed for the conjugate ro-
tation using the parameter vector

p = (a11, a12, a21, a22, d1, d2, h32)T (D.1)

In this section it is now shown that for a speci�c choice of parameters pz

pz = (0, 1,−1, 0, 1, 1, 0)T (D.2)

it is possible to run into seven orthogonal direction on the manifold of con-
jugate rotations. To show this, the source code of �gure D.1 is used in a
symbolic linear algebra package [Matlab, 2008]:

As can be seen, when the code is executed the chosen set of parameters
leads to a valid conjugate rotation and results in

∂vec [H]

∂p

∣∣∣∣
pz

=



1 1/3 −1/3 0 0 0 0
0 1/3 2/3 0 0 0 0
0 1/3 −1/3 0 0 0 0
0 1 0 0 0 0 1
0 0 0 1 0 0 1
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0


(D.3)

This matrix has rank 7, as can easily be checked.

rank

[
∂vec [H]

∂p

∣∣∣∣
pz

]
= 7 (D.4)
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syms a11 a12 a21 a22 real;

syms dx dy real;

syms h32 real;

% parameters from LAF correspondence

A = [a11 a12; a21 a22];

d = [dx;dy];

lambda = det(A)^(1/3);

% solve for CR constraint

m = (lambda - trace(A))*d' + d'*A';

y = lambda*(trace(A) + 1) - (trace(A)^2)/2 - trace(A) + trace(A^2)/2;

a = -m(2)/m(1);

b = - y/m(1);

% get h31

h = [a*h32+b, h32];

% construct conjugate rotation

H = [eye(2), d; 0,0,1] * [A,zeros(2,1); h,1]

% differentiate each matrix element with respect to the seven parameters

J = [diff(H(:), a11), diff(H(:), a12), diff(H(:), a21), diff(H(:), a22), ...

diff(H(:), dx), diff(H(:), dy), diff(H(:), h32)];

% select a simple conjugate rotation with detA=1

a11 = 0;

a12 = 1;

a21 = -1;

a22 = 0;

dx = 1;

dy = 1;

h32 = 0;

% show how the CR looks like with these parameters

actualH = subs(H)

% just some sanity checks: conjugate rotation ?

% lhs of 5.37:

subs(((lambda-trace(A))*d'+d'*A')*h')

% rhs of 5.37:

subs(-0.5*trace(A)*trace(A) - trace(A) + 0.5*trace(A*A)+lambda*(trace(A)+1))

% show eigenvalues:

Heigenvalues = eig(actualH)

% compare eigenvalues of a specific rotation matrix (90 degree z rotation)

Reigenvalues = eig([0 1 0; -1 0 0; 0 0 1])

% show how the matrix entries depend on the 7 parameters

actualJ = subs(J)

% and print its rank

rank(actualJ)

Figure D.1: Matlab Source Code for Analysis of the Conjugate Rotation
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