Marine Biogeochemie

Methanhydrat besteht aus Käfigen aus Wassermolekülen, in dem sich Methangas festsetzt

Methanhydrate sollen im Labor mit CO2 umgesetzt werden, um Erdgas (Methan) aus den Hydraten zu gewinnen und das CO2 als Hydrat zu speichern. Diese Reaktion ist thermodynamisch begünstigt, da CO2 -Hydrate unter den Druck- und Temperaturbedingungen im Meeresboden stabiler sind als  Methanhydrate.

Der Austausch von Gasmolekülen im Hydratgitter läuft jedoch unter in-situ Bedingungen nur sehr langsam ab. Die Wasserkäfige, in denen die Methanmoleküle gefangen sind, müssen durch Wärmezufuhr oder chemische Substanzen stimuliert oder destabilisiert werden, um die Geschwindigkeit der Gasaustauschreaktion zu erhöhen.

Im Teilprojekt B2 werden daher verschiedene Verfahren im Labormaßstab getestet, die alle darauf abzielen:

  • die Umwandlung von Methan- in CO2-Hydrate zu beschleunigen,
  • Erdgas in hoher Rate freizusetzen
  • und CO2 als Hydrat sicher im Meeresboden zu speichern. 

Methoden

Methanhydrate werden zunächst in einer Sandmatrix synthetisiert und anschließend durch die Zugabe von CO2, Wärme und weiteren Reagenzien zersetzt und in CO2-Hydrate umgewandelt. Die Reaktionskinetik wird unter kontrollierten Bedingungen (50 – 400 bar und 0 – 50°C) mit Hilfe verschiedener Meßmethoden erfasst (CO2- und Methansensoren, Gaschromatographie, NMR- und Raman-Spektroskopie, etc.). Dabei werden die folgenden Ansätze getestet:

  • Methanhydrat + flüssiges CO2
  • Methanhydrat + flüssiges CO2 + Wärme
  • Methanhydrat + superkritisches CO2
  • Methanhydrat + flüssiges CO2 + weitere Gase (N2, Ar, …)
  • Methanhydrat + flüssiges CO2 + Polymere

Die Wärme wird durch zwei verschiedene Verfahren generiert. Zum einen wird in einem Reaktor Methan mit Luftsauerstoff verbrannt und zum anderen wird warmes Oberflächenwasser mit Hilfe einer Mammutpumpe in die Hydrate eingebracht.

Literatur

Author

Title

Year

Journal/Proceedings

Reftype

DOI/URL

Althaus, W., Graen-Heedfeld, J., Hadulla, A., Schlüter, S., Schultz, H.J. & Schulzke, T.

Verfahren und Vorrichtung zur Gewinnung und Förderung von Gashydraten und Gasen aus Gashydraten

2003

(WO/2003/021079) 

patent

 

Bigalke, N., Rehder, G., Gust, G., Michl, F., Labahn, E. & Steffen, H.

A new approach to investigate effects of CO2 sequestration within the deep ocean using advanced pressure lab technology.

2006

Geophysical Research Abstracts
Vol. 8(02825,) 

article

URL 

Brewer, P., Peltzer, E., Friederich, G. & Rehder, G.

Experimental determination of the fate of rising CO2 droplets in sea water

2002

Environmental Science and Technology
Vol. 36(24), pp. 5441–5446 

article

DOI  

Brewer, P.G., Paull, C., Peltzer, E.T., Ussler, W., Rehder, G. & Friederich, G.

Measurements of the fate of gas hydrates during transit through the ocean water column

2002

Geophysical Research Letters
Vol. 29(22), pp. 4 

article

DOI  

Dholabhai, P.D., Englezos, P., Kalogerakis, N. & Bishnoi, P.R.

EQUILIBRIUM CONDITIONS FOR METHANE HYDRATE FORMATION IN AQUEOUS MIXED ELECTROLYTE-SOLUTIONS

1991

Canadian Journal of Chemical Engineering
Vol. 69(3), pp. 800-805 

article

 

Esser, D.

Mets – The Tool for Pipeline Inspection

2002

Sea Technology, pp. 51 

article

URL 

Haeckel, M., Suess, E., Wallmann, K. & Rickert, D.

Rising methane gas bubbles form massive hydrate layers at the seafloor

2004

Geochimica Et Cosmochimica Acta
Vol. 68(21), pp. 4335-4345 

article

DOI  

Hensen, C. & Wallmann, K.

Methane formation at Costa Rica continental margin - constraints for gas hydrate inventories and cross-decollement fluid flow

2005

Earth and Planetary Science Letters
Vol. 236(1-2), pp. 41-60 

article

DOI  

Luff, R., Greinert, J., Wallmann, K., Klaucke, I. & Suess, E.

Simulation of long-term feedbacks from authigenic carbonate crust formation at cold vent sites

2005

Chemical Geology
Vol. 216(1-2), pp. 157-174 

article

DOI  

Luff, R., Haeckel, M. & Wallmann, K.

Robust and fast FORTRAN and MATLAB libraries to calculate pH distributions in a non-steady state model for aqueous systems

2001

Computers & Geosciences
Vol. 27(2), pp. 157-169 

article

DOI  

Luff, R. & Wallmann, K.

Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: Numerical modeling and mass balances

2003

Geochimica Et Cosmochimica Acta
Vol. 67(18), pp. 3403-3421 

article

DOI  

Luff, R., Wallmann, K. & Aloisi, G.

Numerical modeling of carbonate crust formation at cold vent sites: significance for fluid and methane budgets and chemosynthetic biological communities

2004

Earth and Planetary Science Letters
Vol. 221(1-4), pp. 337-353 

article

DOI  

Ohgaki, K., Takano, K., Sangawa, H., Matsubara, T. & Nakano, S.

Methane exploitation by carbon dioxide from gas hydrates - Phase equilibria for CO2-CH4 mixed hydrate system

1996

Journal of Chemical Engineering of Japan
Vol. 29(3), pp. 478-483 

article

 

Rehder, G., Brewer, P.W., Peltzer, E.T. & Friederich, G.

Enhanced lifetime of methane bubble streams within the deep ocean

2002

Geophysical Research Letters
Vol. 29(15) 

article

DOI  

Rehder, G., Kirby, S.H., Durham, W.B., Stern, L.A., Peltzer, E.T., Pinkston, J. & Brewer, P.G.

Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth

2004

Geochimica Et Cosmochimica Acta
Vol. 68(2), pp. 285-292 

article

DOI  

Reuter, R., Badewien, T.H., Bartholoma, A., Braun, A., Lubben, A. & Rullkotter, J.

A hydrographic time series station in the Wadden Sea (southern North Sea)

2009

Ocean Dynamics
Vol. 59(2), pp. 195-211 

article

DOI  

Schicks, J., Neumann, D., Specht, U. & Veser, G.

Nanoengineered catalysts for high-temperature methane partial oxidation

2003

Catalysis Today
Vol. 81(2), pp. 287-296 

article

DOI  

Schicks, J.M., Naumann, R. & Erzinger, J.

Phase transitions in methane + ethane + propane gas hydrates: experimental observation versus modelled data.

2005

Proceedings of the Fifth International Conference on Gas Hydrates, pp. 1657-1662 

inproceedings

URL 

Schicks, J.M., Naumann, R., Erzinger, J., Hester, K.C., Koh, C.A. & Sloan, E.D.

Phase transitions in mixed gas hydrates: Experimental observations versus calculated data

2006

Journal of Physical Chemistry B
Vol. 110(23), pp. 11468-11474 

article

DOI  

Schultz, H.

Zum Gashydratabbau mittels Mammut-Pumpen-Prinzip

2004

Fraunhofer IRB Verlag: pp. 173

book

URL 

Schultz, H.J., Deerberg, G. & H., F.

Neue Perspektive zum Abbau von Gashydraten.

2006

VGB Power Tech
Vol. 84(10), pp. 130-137 

article

 

Schultz, H.J., Fahlenkamp, H. & Deerberg, G.

Simulation des Abbaus ozeanischer Gashydrate

2004

Chemie Ingenieur Technik
Vol. 76(6), pp. 751-754 

article

DOI  

Seo, Y.T. & Lee, H.

Multiple-phase hydrate equilibria of the ternary carbon dioxide, methane, and water mixtures

2001

Journal of Physical Chemistry B
Vol. 105(41), pp. 10084-10090 

article

DOI  

Sloan, E.D.J. & Koh, C.

Clathrate hydrates of natural gases

2008

Marcel Dekker, Inc.: pp. 537-628 

inbook

URL 

Spangenberg, E. & Kulenkampff, J.

Physical Properties of Gashydrate-Bearing Sediments

2005

Proceedings of the Fifth International Conference on Gas Hydrates, pp. 1657-1662 

inproceedings

URL 

Spangenberg, E., Kulenkampff, J., Naumann, R. & Erzinger, J.

Pore space hydrate formation in a glass bead sample from methane dissolved in water

2005

Geophysical Research Letters
Vol. 32(24), pp. 4 

article

DOI  

Tishchenko, P., Hensen, C., Wallmann, K. & Wong, C.S.

Calculation of the stability and solubility of methane hydrate in seawater

2005

Chemical Geology
Vol. 219(1-4), pp. 37-52 

article

DOI  

Wallmann, K., Aloisi, G., Haeckel, M., Obzhirov, A., Pavlova, G. & Tishchenko, P.

Kinetics of organic matter degradation, microbial methane generation, and gas hydrate formation in anoxic marine sediments

2006

Geochimica Et Cosmochimica Acta
Vol. 70(15), pp. 3905-3927 

article

DOI