Drei Exemplare der Kalkalge Emiliania huxleyi, aufgenommen mit dem Rasterelektronenmikroskop. Foto: Kai Lohbeck, GEOMAR

Mit Wasserschöpfern sammeln Forschende regelmäßiig Proben für weitere Analysen. Foto: Maike Nicolai, GEOMAR

Probennahme an den KOSMOS-Mesokosmen im Raunefjord. Foto: Maike Nicolai, GEOMAR

Abpumpen von Sinkstoffen aus der Sedimentfalle am unteren Ende der Mesokosmen. Foto: Maike Nicolai, GEOMAR

14.12.2016

Eine kleine Veränderung mit großen Folgen

Mesokosmen-Experiment zeigt, wie Wechselwirkungen im Nahrungsnetz die Reaktionen von kalkbildendem Phytoplankton auf Ozeanversauerung verstärken

14.12.2016/Kiel/Bergen/Southern Cross. Coccolithophoriden, einzelliges Phytoplankton, das eine Schlüsselrolle für das Klima auf unserem Planeten spielt, könnte im Ozean der Zukunft seine Konkurrenzfähigkeit verlieren. In einem Feldexperiment, das die Folgen der Ozeanversauerung auf die Coccolithophoride Emiliania huxleyi in ihrer natürlichen Lebensgemeinschaft untersucht, war diese Art nicht mehr in der Lage, Blüten zu bilden. In diesen Phasen gesteigerten Wachstums trägt die Alge besonders stark zum Stoffkreislauf und zum Transport von Kohlenstoff in die Tiefe bei. Aus seinen Beobachtungen schließt ein Team von Forschenden unter Leitung des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel, dass Wechselwirkungen innerhalb des Nahrungsnetzes eine schwache physiologische Reaktion so weit verstärkten, dass sie einen starken Einfluss auf das Ökosystem haben können. Die Ergebnisse der Studie sind im Fachmagazin Nature Geoscience veröffentlicht.

Die Aufnahme von menschengemachten Kohlendioxid (CO2) im Ozean steigert den Säuregehalt des Meerwassers und reduziert die Konzentration von Karbonat-Ionen. Aufgrund dieses Prozesses, der Ozeanversauerung, benötigen kalkbildende Organismen mehr Energie, um Schalen und Skelette aufzubauen. Viele Studien zeigten, dass dies auch für Emiliania huxleyi gilt, dem häufigsten und produktivsten kalkbildenden Organismus der Weltmeere. Setzt man diese einzellige Alge in kontrollierten Labor-Experimenten saureren Lebensbedingungen aus, dann sinken ihre Wachstums- und Kalkbildungsraten geringfügig. Auch nach mehr als zweitausend Generationen unter Ozeanversauerung bleibt diese Reaktion bis zu einem gewissen Grad erhalten. Dies lässt vermuten, dass eine Anpassung durch Evolution die negativen Auswirkungen der Ozeanversauerung nicht komplett aufheben kann. Aber was dies für die Fähigkeit der Alge bedeutet, ihre Konkurrenzfähigkeit in ihrem natürlichen Lebensumfeld aufrecht zu erhalten, wenn der Ozean zunehmend saurer wird, war bis jetzt unklar.

Um diese Frage zu beantworten, setzte ein Team von Wissenschaftlerinnen und Wissenschaftlern unter Leitung des GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel die KOSMOS-Experimentier-Anlage ein (KOSMOS: Kiel Off-Shore Mesocosms for Ocean Simulations). Im Rahmen der Forschungsprojekte SOPRAN (Surface Ocean Processes in the Anthropocene) und BIOACID (Biological Impacts of Ocean Acidification), installierten sie das KOSMOS-System im Raunefjord an der Westküste Norwegens. In dieser Region blüht Emiliania huxleyi alljährlich im späten Frühling. Jede der neun KOSMOS-Einheiten schloss etwa 75 Kubikmeter Meerwasser in einem 25 Meter langen Kunststoffschlauch ein. Diese „Riesen-Reagenzgläser“ wurden auf Kohlendioxid-Konzentrationen gebracht, die einem Bereich zwischen heutigen und den für Mitte des nächsten Jahrhunderts prognostizierten Werten entsprachen. Sechs Wochen lang erfassten Teilnehmerinnen und Teilnehmer der Studie verschiedene Messparameter und entnahmen Proben für weitere Analysen. Herabsinkende Partikel wurden in trichterförmigen Sedimentfallen am unteren Ende der Mesokosmen gesammelt und ebenfalls analysiert.

“Mit Blick auf die eher geringen Änderungen in der Stoffwechsel-Leistung, die Emiliania in vorangegangenen Laborexperimenten zeigte, waren wir davon ausgegangen, dass sie ihre ökologische Nische trotz der Nachteile auch in einem saurer werdenden Ozean beibehalten würde. Was wir aber beobachteten, war eine große Überraschung“, erinnert sich Prof. Ulf Riebesell, Meeresbiologe am GEOMAR und Koordinator der KOSMOS-Experimente. In den Mesokosmen, die Lebensbedingungen des zukünftigen Ozeans simulierten, war Emiliania nicht mehr in der Lage, eine Blüte zu bilden. Genaue Analysen der Messdaten zeigten, dass Emilianias Niedergang bereits weit vor der Blütephase begann. Ein aufgrund der Versauerung geringfügig vermindertes Zellwachstum führte dazu, dass die Population kontinuierlich schrumpfte. „Als es für Emiliania an der Zeit war, eine Blüte zu bilden, waren nur noch so wenige Zellen vorhanden, dass sie ihre Konkurrenten nicht mehr übertrumpfen konnte“, urteilt Riebesell.

Dass die kalkbildende Alge ihre Konkurrenzfähigkeit verlor, hatte immense Auswirkungen auf das Ökosystem. „Der Stoff-Fluss von organischem Material in die Tiefe war ohne die Blüte stark reduziert“, erklärt Dr. Kai Schulz, Meeres-Biogeochemiker an der Southern Cross University Australien. Emilianias Kalkplättchen bilden einen Ballast für organisches Material und sorgen dafür, dass es zügig in den tiefen Ozean herabsinkt. „Ohne das Kalk-Gewicht sinken die Aggregate langsamer, und Bakterien haben mehr Zeit, das organische Material in oberen Wasserschichten zu verarbeiten. Daher bleibt mehr CO2, das im organischen Material gebunden ist, an der Oberfläche. Dies reduziert die Fähigkeit des Ozeans, CO2 aus der Atmosphäre aufzunehmen.“

Eine weitere Rückwirkung ergibt sich aus der Tatsache, dass Emiliania eine wichtige Produzentin von Dimethylsulfid ist, eines Gases, dem eine kühlende Wirkung im Klimasystem zugeschrieben wird. Für die Mesokosmen, in denen Emiliania blühte, wurden hohe Konzentrationen dieses Gases verzeichnet. In den Mesokosmen, in denen Bedingungen des zukünftigen Ozeans simuliert wurden, war es jedoch deutlich reduziert. Eine geringere Kohlendioxid-Aufnahme im Ozean und eine niedrigere Produktion des klimakühlenden Dimethylsulfids wirken in die gleiche Richtung: Sie reduzieren die Fähigkeit des Ozeans, die globale Erwärmung abzumildern.

Die Ergebnisse der Studie unterstreichen, wie wichtig es ist, Auswirkungen von Ozeanversauerung in natürlichen Lebensgemeinschaften zu untersuchen. Wenn sich die Stoffwechsel-Leistung eines Organismus auch nur leicht wandelt, kann dies wesentliche Konsequenzen für dessen Durchsetzungsvermögen in seinem natürlichen Umfeld haben, wo er mit anderen Arten konkurriert und Verlusten durch Fraß oder Vireninfektionen ausgesetzt ist. „Wenn Emiliania huxleyi es nicht mehr schafft, ihre wichtige Rolle aufrecht zu erhalten, können andere, möglicherweise nicht-kalkbildende Organismen übernehmen. Das kann einen Regimewechsel mit weitreichenden ökologischen und biogeochemischen Folgen auslösen“, folgert Riebesell.

Originalveröffentlichung:
Riebesell, U., Bach, L.T., Bellerby, R.G.J., Bermudez Monsalve, R., Boxhammer, T., Czerny, J., Larsen, A., Ludwig, A., Schulz: Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification. Nature Geoscience (2016), doi:10.1038/ngeo2854

Links:
www.bioacid.de BIOACID (Biological impacts of Ocean Acidification)
sopran.pangaea.de SOPRAN (Surface Ocean Processes in the Anthropocene)
http://scu.edu.au/coastal-biogeochemistry Centre for Coastal Biogeochemistry, Southern Cross University, Australien
www.fimcbor.espol.edu.ec Facultad de Ingeniería Marítima, Ciencias Biológicas, Oceánicas y Recursos Naturales. Escuela Superior Politécnica del Litoral, Ecuador
www.geomar.de GEOMAR Helmholtz Centre for Ocean Research Kiel
www.imr.no Hjort Centre for Marine Ecosystem Dynamics, Uni Research Environment, Norwegen
www.niva.no Norwegian Institute for Water Research (NIVA), Norwegen
http://english.sklec.ecnu.edu.cn State Key Laboratory of Estuarine and Coastal Research, East China Normal University, China
http://uni.no Uni Research, Norwegen


Kontakt:
Maike Nicolai (GEOMAR Kommunikation & Medien), Tel.: 0431 600 2807, presse@geomar.de