Prof. Dr. Laura M. Wallace
Helmholtz Distinguished Professorship for Geodynamics
Topic 3
Research devision 4: Dynamics of the ocean floor
Research Unit: Marine Geodynamics
Office:
Room: 8D-219
Phone: +49 431 600 2241
E-mail: lwallace(at)geomar.de
Address:
Wischhofstraße 1-3
24148 Kiel
Assistance:
Ines Staben
Phone: +49 431 600 2243
E-mail: istaben(at)geomar.de
Research Focus
Laura uses geodetic methods to study the deformation of the earth's crust at tectonic plate boundaries. She conducts research in various locations, including New Zealand, Papua New Guinea, the Solomon Islands and Japan. She has a particular focus on understanding the spectrum of deformation processes that occur throughout the earthquake cycle at subduction zone plate boundaries. She uses both land-based GNSS methods and seafloor geodetic methods (seafloor pressure, GNSS-Acoustic, IODP downhole observatories) to investigate a range of crustal deformation processes.
She also has a strong interest in using multi-disciplinary observations to gain new insights into the physical processes responsible for active deformation observed geodetically, and has led several large, multidisciplinary experiments. In 2018, Laura was co-leader of IODP Expedition 375 on board the scientific drilling vessel JOIDES Resolution. The expedition investigated the causes of slow-slip events from Hikurangi and collected core samples and geophysical logs from rocks involved in producing slow-slip events at New Zealand’s Hikurangi subduction zone, and installed observatories beneath the seafloor to monitor changes in the crust during the slow-slip cycle. She also led the 2014 HOBITSS (Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip) which was the first experiment to successfully use seafloor pressure sensors to resolve slow slip events on an offshore subduction zone.
Since 2023, Laura has a Helmholtz Distinguished Professorship (HDP) for Geodynamics, which is part of the Marine Geodynamics research unit. She maintains a joint affiliation with the University of Texas Institute for Geophysics.
Topics
Tectonics, crustal deformation, earthquake cycle, subduction zones, and seismic and tsunami hazard
Projects
-
2025-2030: SAFATOR (SMART Cables And Fiber-optic Sensing Amphibious Demonstrator)
-
2022-2026: GONDOR (Geophysical Observations of Near-Trench Deformation and Oceanographic References (International funding: New Zealand, Germany, Japan, United States)
-
2021-2026: SMART Subsea Cables
-
2021-2026: Unraveling the habitat and dynamics of slow slip events through integrated borehole observations in the northern Hikurangi subduction margin (U.S. NSF Funded)
-
2020-2026: MTMOD (Megathrust Modeling Framework) (U.S. NSF Funded)
-
2020-2025: PULSE (Physical Process UnderLying Slow Earthquakes) (New Zealand Marsden Fund)
Vita
Research
since 2023:
Helmholtz Distinguished Professorship (HDP) for Geodynamics at the GEOMAR Helmholtz Center for Ocean Research Kiel/Kiel University Christian-Albrechts-Universität zu Kiel
2016-2023:
Principal Scientist at GNS Science, New Zealand.
since 2012:
Research Scientist (currently Research Professor) at the University of Texas, Institute of Geophysics, Austin, USA
2002-2012:
Research Scientist (Senior Scientist from 2007-2012), GNS Science, Lower Hutt, NZ
Education
2002:
PhD., Geosciences, University of California, Santa Cruz (Supervisor: Eli Silver)
Dissertation: Tectonics and 'arc-continent' collision in Papua New Guinea: New insights from geodetic, geophysical and seismological data
1995:
B.S. (with honors), Geology, University of North Carolina-Chapel Hill
Publications (OceanRep)
Articles in a Scientific Journal - peer-reviewed
and Bannister, S.
(2024)
Low‐Frequency Earthquakes Downdip of Deep Slow Slip Beneath the North Island of New Zealand.
, Kimura, T., Machida, Y., Ide, S. and Davis, E.
(2017)
Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust.
Science, 356
(6343).
pp. 1157-1160.
DOI 10.1126/science.aan3120.
, Bassett, D., Henrys, S., Pecher, I., Crutchley, G.
and Plaza Faverola, A.
(2021)
Physical conditions and frictional properties in the source region of a slow-slip event.
Nature Geoscience, 14
(5).
pp. 334-340.
DOI 10.1038/s41561-021-00741-0.
(2018)
Geophysical Constraints on the Relationship Between Seamount Subduction, Slow Slip, and Tremor at the North Hikurangi Subduction Zone, New Zealand.
(2019)
The role of the upper plate in controlling fluid-mobile element (Cl, Li, B) cycling through subduction zones: Hikurangi forearc, New Zealand.
, Saffer, D. M., Bell, R. E., Underwood, M. B., Fagereng, A., Meneghini, F., Savage, H. M., Rabinowitz, H. S., Morgan, J. K., Kitajima, H., Kutterolf, S.
, Hashimoto, Y., Engelmann de Oliveira, C. H., Noda, A., Crundwell, M. P., Shepherd, C. L., Woodhouse, A. D., Harris, R. N., Wang, M., Henrys, S., Barker, D. H. N., Petronotis, K. E., Bourlange, S. M., Clennell, M. B., Cook, A. E., Dugan, B. E., Elger, J.
, Fulton, P. M., Gamboa, D., Greve, A., Han, S., Hüpers, A., Ikari, M. J., Ito, Y., Kim, G. Y., Koge, H., Lee, H., Li, X., Luo, M., Malie, P. R., Moore, G. F., Mountjoy, J. J., McNamara, D. D., Paganoni, M., Screaton, E. J., Shankar, U., Shreedharan, S., Solomon, E. A., Wang, X., Wu, H. Y., Pecher, I. A. and LeVay, L. J.
(2020)
Slow slip source characterized by lithological and geometric heterogeneity.
, Beavan, R. J., Bannister, S. and Segall, P.
(2014)
Time-dependent modeling of slow slip events and associated seismicity and tremor at the Hikurangi subduction zone, New Zealand.
Journal of Geophysical Research: Solid Earth, 119
(1).
pp. 734-753.
DOI 10.1002/2013JB010609.
, Gase, A., Luckie, T., Jacobs, K., Tozer, B., Arai, R., Okaya, D., Mochizuki, K., Fujie, G. and Yamamoto, Y.
(2022)
Crustal Structure of the Hikurangi Margin From SHIRE Seismic Data and the Relationship Between Forearc Structure and Shallow Megathrust Slip Behavior.
and Elliott, J. L.
(2025)
Variation in slip behaviour along megathrusts controlled by multiple physical properties.
Nature Geoscience, 18
(1).
pp. 20-31.
DOI 10.1038/s41561-024-01617-9.
, Ellis, S. and Palmer, N.
(2010)
The darfield (canterbury) earthquake: Geodetic observations and preliminary source model.
, Palmer, N., Denys, P., Ellis, S., Fournier, N., Hreinsdottir, S., Pearson, C. and Denham, M.
(2016)
New Zealand GPS velocity field: 1995-2013.
New Zealand Journal of Geology and Geophysics, 59
(1).
pp. 5-14.
DOI 10.1080/00288306.2015.1112817.
and Agard, P.
(2018)
Twenty years of subduction zone science: Subduction top to bottom 2 (ST2B-2).
and Saffer, D. M.
(2022)
Spatial Variation of Shallow Stress Orientation Along the Hikurangi Subduction Margin: Insights From In-Situ Borehole Image Logging.
and Beavan, J.
(2010)
Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events.
Geophysical Journal International, 180
(1).
pp. 34-48.
DOI 10.1111/j.1365-246X.2009.04401.x.
, Ellis, S., Little, T., Mizera, M., Niemeijer, A. and Lavier, L.
(2020)
Mechanical Implications of Creep and Partial Coupling on the World's Fastest Slipping Low-Angle Normal Fault in Southeastern Papua New Guinea.
Journal of Geophysical Research: Solid Earth, 125
(10).
Art.Nr.: e2020JB020117.
DOI 10.1029/2020JB020117.
and Lavier, L.
(2019)
Tectonic Inheritance Following Failed Continental Subduction: A Model for Core Complex Formation in Cold, Strong Lithosphere.
Tectonics, 38
(5).
pp. 1742-1763.
DOI 10.1029/2018TC005383.
and Shen, C. C.
(2020)
Emerged Coral Reefs Record Holocene Low-Angle Normal Fault Earthquakes.
Geophysical Research Letters, 47
(20).
Art.Nr.: e2020GL089301.
DOI 10.1029/2020GL089301.
and Ellis, S.
(2015)
Paleomagnetic evidence for vertical-axis rotations of crustal blocks in the Woodlark Rift, SE Papua New Guinea: Miocene to present-day kinematics in one of the world's most rapidly extending plate boundary zones.
Geochemistry, Geophysics, Geosystems, 16
(7).
pp. 2058-2081.
DOI 10.1002/2015GC005788.
, Ries, W., Hayes, G. P., Haller, K. M., Yoshioka, T., Koehler, R. D., Clark, D., Wolfson-Schwehr, M., Boettcher, M. S., Villamor, P., Horspool, N., Ornthammarath, T., Zuñiga, R., Langridge, R. M., Stirling, M. W., Goded, T., Costa, C. and Yeats, R.
(2015)
Development of the Global Earthquake Model?s neotectonic fault database.
Natural Hazards, 79
(1).
pp. 111-135.
DOI 10.1007/s11069-015-1831-6.
(2011)
Investigating subduction earthquake geology along the southern Hikurangi margin using palaeoenvironmental histories of intertidal inlets1.
New Zealand Journal of Geology and Geophysics, 54
(3).
pp. 255-271.
DOI 10.1080/00288306.2011.562903.
, Power, W. L. and Sabaa, A. T.
(2015)
Evidence for past subduction earthquakes at a plate boundary with widespread upper plate faulting: Southern hikurangi margin, new zealand.
Bulletin of the Seismological Society of America, 105
(3).
pp. 1661-1690.
DOI 10.1029/2006GL026596.
, Alloway, B. and Wilson, K.
(2006)
Paleoecological insights into subduction zone earthquake occurrence, eastern North Island, New Zealand.
Bulletin of the Geological Society of America, 118
(9-10).
pp. 1051-1074.
DOI 10.1130/B25761.1.
, LeVay, L. J. and Petronotis, K. E.
(2020)
Physical Properties and Gas Hydrate at a Near-Seafloor Thrust Fault, Hikurangi Margin, New Zealand.
Geophysical Research Letters, 47
(16).
Art.Nr.: e2020GL088474.
DOI 10.1029/2020GL088474.
, Haines, A. J. and Williams, C. A.
(2016)
High-resolution view of active tectonic deformation along the Hikurangi subduction margin and the Taupo Volcanic Zone, New Zealand.
New Zealand Journal of Geology and Geophysics, 59
(1).
pp. 43-57.
DOI 10.1080/00288306.2015.1127823.
and Townend, J.
(2005)
Slow slip on the northern Hikurangi subduction interface, New Zealand.
Geophysical Research Letters, 32
(16).
pp. 1-4.
DOI 10.1029/2005GL023607.
, Williams, C. and Harris, R.
(2015)
Fluid budgets along the northern Hikurangi subduction margin, New Zealand: The effect of a subducting seamount on fluid pressure.
, Hacker, B. R. and Buiter, S. J. H.
(2011)
Feedback between rifting and diapirism can exhume ultrahigh-pressure rocks.
Earth and Planetary Science Letters, 311
(3-4).
pp. 427-438.
DOI 10.1016/j.epsl.2011.09.031.
and Patterson, N.
(2007)
A future magma inflation event under the rhyolitic Taupo volcano, New Zealand: Numerical models based on constraints from geochemical, geological, and geophysical data.
Journal of Volcanology and Geothermal Research, 168
(1-4).
pp. 1-27.
DOI 10.1016/j.jvolgeores.2007.06.004.
(2016)
Calculating regional stresses for northern Canterbury: the effect of the 2010 Darfield earthquake.
New Zealand Journal of Geology and Geophysics, 59
(1).
pp. 202-212.
DOI 10.1080/00288306.2015.1123740.
, Petronotis, K. and LeVay, L.
(2019)
Mixed deformation styles observed on a shallow subduction thrust, Hikurangi margin, New Zealand.
(2008)
The Mw 6.6 Gisborne earthquake of 2007: Preliminary records and general source characterisation.
, Mueller, C. and Johnston, D. M.
(2014)
Tsunami inundation in Napier, New Zealand, due to local earthquake sources.
Natural Hazards, 70
(1).
pp. 415-445.
DOI 10.1007/s11069-013-0820-x.
(2011)
Deep tremor in New Zealand triggered by the 2010 Mw8.8 Chile earthquake.
Geophysical Research Letters, 38
(15).
DOI 10.1029/2011GL048319.
(2015)
The Hikurangi margin continuous GNSS and seismograph network of New Zealand.
Seismological Research Letters, 86
(1).
pp. 101-108.
DOI 10.1785/0220130181.
(2014)
Exploring new drilling prospects in the southwest Pacific.
Scientific Drilling, 17
.
pp. 45-50.
DOI doi: 10.5194/sd-17-45-2014.
, Weatherill, G., Williams, C. A. and Wotherspoon, L. M.
(2024)
The 2022 Aotearoa New Zealand National Seismic Hazard Model: Process, Overview, and Results.
Bulletin of the Seismological Society of America, 114
(1).
pp. 7-36.
DOI 10.1785/0120230182.
(2023)
A time-dependent seismic hazard model following the Kaikōura M7.8 earthquake.
New Zealand Journal of Geology and Geophysics, 66
(2).
pp. 192-216.
DOI 10.1080/00288306.2022.2158881.
, Allen, T. I., Bradley, B. A., Charlton, D., Clark, K. J., Fraser, J., Griffin, J., Hamling, I. J., Howell, A., Hudson-Doyle, E., Hulsey, A., Jurgens, V. O., Kaiser, A. E., Kirkman, R., Langridge, R. M., Maurer, J., Rattenbury, M. S., Ristau, J., Schorlemmer, D., Townend, J., Villamor, P. and Williams, C.
(2024)
The Seismicity Rate Model for the 2022 Aotearoa New Zealand National Seismic Hazard Model.
Bulletin of the Seismological Society of America, 114
(1).
pp. 182-216.
DOI 10.1785/0120230165.
(2020)
New Zealand-Wide Geodetic Strain Rates Using a Physics-Based Approach.
Geophysical Research Letters, 47
(1).
Art.Nr.: e2019GL084606.
DOI 10.1029/2019GL084606.
and Dimitrova, L.
(2019)
Slow Slip Event Detection in Cascadia Using Vertical Derivatives of Horizontal Stress Rates.
Journal of Geophysical Research: Solid Earth, 124
(5).
pp. 5153-5173.
DOI 10.1029/2018JB016898.
, Ellis, S., Motagh, M., Samsonov, S., Palmer, N. and Hreinsdõttir, S.
(2014)
Crustal deformation and stress transfer during a propagating earthquake sequence: The 2013 Cook Strait sequence, central New Zealand.
Journal of Geophysical Research: Solid Earth, 119
(7).
pp. 6080-6092.
DOI 10.1002/2014JB011084.
, Wright, T. J., D'Anastasio, E., Bannister, S., Burbidge, D., Denys, P., Gentle, P., Howarth, J., Mueller, C., Palmer, N., Pearson, C., Power, W., Barnes, P., Barrell, D. J. A., Van Dissen, R., Langridge, R., Little, T., Nicol, A., Pettinga, J., Rowland, J. and Stirling, M.
(2017)
Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand.
Science, 356
(6334).
pp. 1-10.
DOI 10.1126/science.aam7194.
(2015)
Silent triggering: Aseismic crustal faulting induced by a subduction slow slip event.
Earth and Planetary Science Letters, 421
.
pp. 13-19.
DOI doi: 10.1016/j.epsl.2015.03.046.
(2022)
A Snapshot of New Zealand's Dynamic Deformation Field From Envisat InSAR and GNSS Observations Between 2003 and 2011.
Geophysical Research Letters, 49
(2).
Art.Nr.: e2021GL096465.
DOI 10.1029/2021GL096465.
, Marden, M. and Palmer, A. S.
(2015)
Foraminiferal record of Holocene paleo-earthquakes on the subsiding south-western Poverty Bay coastline, New Zealand.
New Zealand Journal of Geology and Geophysics, 58
(2).
pp. 104-122.
DOI 10.1080/00288306.2014.992354.
, Barnes, P. M., Eberhart-Phillips, D., Saffer, D. and Boulton, C.
(2025)
How Subduction Margin Processes and Properties Influence the Hikurangi Subduction Zone.
, Beavan, J., Fournier, N., Cas, R., Ailleres, L. and Silcock, D.
(2015)
Contemporary ground deformation in the Taupo Rift and Okataina Volcanic Centre from 1998 to 2011, measured using GPS.
, Weinstein, S. and Wilcock, W.
(2022)
SMART Subsea Cables for Observing the Earth and Ocean, Mitigating Environmental Hazards, and Supporting the Blue Economy.
, Rabinowitz, H. S., Savage, H. M., Hamling, I. J. and Kopf, A. J.
(2020)
Observations of Laboratory and Natural Slow Slip Events: Hikurangi Subduction Zone, New Zealand.
, Yoshikawa, Y., Inazu, D., Garcia, E. S. M., Muramoto, T., Webb, S. C., Ohta, K., Suzuki, S. and Hino, R.
(2021)
Water Depth Dependence of Long-Range Correlation in Nontidal Variations in Seafloor Pressure.
and Hino, R.
(2020)
Sea surface gravity waves excited by dynamic ground motions from large regional earthquakes.
Seismological Research Letters, 91
(4).
pp. 2268-2277.
DOI 10.1785/0220190267.
, Webb, S. C., Yamada, T. and Shinohara, M.
(2022)
Continuous Tremor Activity With Stable Polarization Direction Following the 2014 Large Slow Slip Event in the Hikurangi Subduction Margin Offshore New Zealand.
, Maurer, J., Hamling, I., Williams, C., Rollins, C., Gerstenberger, M. and Van Dissen, R.
(2024)
Inverting Geodetic Strain Rates for Slip Deficit Rate in Complex Deforming Zones: An Application to the New Zealand Plate Boundary.
, Mountjoy, J., Kaneko, Y., Benites, R., Van Houtte, C., Dellow, S., Wotherspoon, L., Elwood, K. and Gledhill, K.
(2017)
The 2016 Kaikōura, New Zealand, Earthquake: Preliminary Seismological Report.
Seismological Research Letters, 88
(3).
pp. 727-739.
, Tape, C., Grapenthin, R., D'Anastasio, E., Henrys, S. and Hino, R.
(2019)
Ultra-long Duration of Seismic Ground Motion Arising From a Thick, Low-Velocity Sedimentary Wedge.
Journal of Geophysical Research: Solid Earth, 124
(10).
pp. 10347-10359.
DOI 10.1029/2019JB017795.
, Hamling, I. J. and Gerstenberger, M. C.
(2018)
Simple Physical Model for the Probability of a Subduction- Zone Earthquake Following Slow Slip Events and Earthquakes: Application to the Hikurangi Megathrust, New Zealand.
Geophysical Research Letters, 45
(9).
pp. 3932-3941.
DOI 10.1029/2018GL077641.
, Araki, E., Kimura, T., Machida, Y., Kobayashi, R., Davis, E., Toczko, S. and Carr, S.
(2018)
Changes in Physical Properties of the Nankai Trough Megasplay Fault Induced by Earthquakes, Detected by Continuous Pressure Monitoring.
Journal of Geophysical Research: Solid Earth, 123
(2).
pp. 1072-1088.
DOI 10.1002/2017JB014924.
, Allgeyer, S., Tregoning, P., D'Anastasio, E. and Benavente, R.
(2017)
Slow slip events and the 2016 Te Araroa Mw 7.1 earthquake interaction: Northern Hikurangi subduction, New Zealand.
Geophysical Research Letters, 44
(16).
pp. 8336-8344.
DOI 10.1002/2017GL074776.
and Lister, G.
(2015)
New Insights into the present-day kinematics of the central and western Papua New Guinea from GPS.
, Suzuki, S., Hino, R. and Henrys, S.
(2018)
Using Tsunami Waves Reflected at the Coast to Improve Offshore Earthquake Source Parameters: Application to the 2016 Mw 7.1 Te Araroa Earthquake, New Zealand.
Journal of Geophysical Research: Solid Earth, 123
(10).
pp. 8767-8779.
DOI 10.1029/2018jb015832.
(2010)
Coastal uplift mechanisms at Pakarae River mouth: Constraints from a combined Holocene fluvial and marine terrace dataset.
Marine Geology, 270
(1-4).
pp. 72-83.
DOI doi:0.1016/j.margeo.2009.10.003.
(2019)
Evolution of a rapidly slipping, active low-angle normal fault, Suckling-Dayman metamorphic core complex, SE Papua New Guinea.
Bulletin of the Geological Society of America, 131
(7-8).
pp. 1333-1363.
DOI 10.1130/B35051.1.
, Engwell, S. L., Scourse, E. M., Barnard, N. H., Kandlbauer, J. and Brown, S. K.
(2016)
Increased rates of large-magnitude explosive eruptions in Japan in the late Neogene and Quaternary.
, Miyoshi, M., Villamor, P., Sparks, R. J. and Hasenaka, T.
(2011)
Volcano-tectonic interactions during rapid plate-boundary evolution in the Kyushu region, SW Japan.
Bulletin of the Geological Society of America, 123
(11-12).
pp. 2201-2223.
DOI 10.1130/B30408.1.
, Williams, C. A. and Hamling, I.
(2023)
Imaging the Spatiotemporal Evolution of Plate Coupling With Interferometric Radar (InSAR) in the Hikurangi Subduction Zone.
, Hamling, I., Williams, C. A., Rollins, C., Gerstenberger, M. and Van Dissen, R.
(2024)
Geodetic Strain Rates for the 2022 Update of the New Zealand National Seismic Hazard Model.
Bulletin of the Seismological Society of America, 114
(1).
pp. 57-77.
DOI 10.1785/0120230145.
and Beavan, J.
(2008)
Slow slip and frictional transition at low temperature at the Hikurangi subduction zone.
Nature Geoscience, 1
(5).
pp. 316-320.
DOI 10.1038/ngeo178.
, Kodaira, S., Bijl, P., Collot, J., Dickens, G., Dugan, B., Dunlea, A. G., Hackney, R., Ikehara, M., Jutzeler, M., McNeill, L., Naik, S., Noble, T., Opdyke, B., Pecher, I., Stott, L., Uenzelmann-Neben, G., Vadakkeykath, Y. and Wortmann, U. G.
(2018)
Developing community-based scientific priorities and new drilling proposals in the southern Indian and southwestern Pacific oceans.
, Saffer, D., Cook, A. E., Fagereng, A., Paganoni, M., Wu, H. Y., Kim, G., Lee, H., Savage, H. M., Barnes, P., Pecher, I., LeVay, L. J. and Petronotis, K. E.
(2021)
Variable In Situ Stress Orientations Across the Northern Hikurangi Subduction Margin.
(2022)
Seafloor overthrusting causes ductile fault deformation and fault sealing along the Northern Hikurangi Margin.
Earth and Planetary Science Letters, 593
.
Art.Nr.: 117651.
DOI doi: 10.1016/j.epsl.2022.117651.
, Hino, R., Suzuki, S., Webb, S. C. and Henrys, S.
(2019)
Seafloor Crustal Deformation on Ocean Bottom Pressure Records With Nontidal Variability Corrections: Application to Hikurangi Margin, New Zealand.
Geophysical Research Letters, 46
(1).
pp. 303-310.
DOI 10.1029/2018GL080830.
(2007)
Temporal stability of deformation rates: Comparison of geological and geodetic observations, Hikurangi subduction margin, New Zealand.
Earth and Planetary Science Letters, 258
(3-4).
pp. 397-413.
DOI 10.1016/j.epsl.2007.03.039.
(2007)
Tectonic evolution of the active Hikurangi subduction margin, New Zealand, since the Oligocene.
Tectonics, 26
(4).
Art.Nr.: TC4002.
DOI 10.1029/2006TC002090.
and Saffer, D. M.
(2025)
Dissociating Gas Hydrate Beneath the Hydrate Stability Zone.
and Warren‐Smith, E.
(2023)
Characteristics of Slow Slip Events Explained by Rate‐Strengthening Faults Subject to Periodic Pore Fluid Pressure Changes.
, Li, D. and Williams, C.
(2022)
Segmentation of Shallow Slow Slip Events at the Hikurangi Subduction Zone Explained by Along-Strike Changes in Fault Geometry and Plate Convergence Rates.
, Bebbington, M. and Denys, P.
(2025)
Assessing Occurrence Patterns of Shallow Hikurangi Slow Slip Events Using Renewal Processes.
(2016)
Splay fault branching from the Hikurangi subduction shear zone: Implications for slow slip and fluid flow.
, Mueller, C., Henrys, S., Clark, K., Fry, B., Wang, X. and Williams, C.
(2016)
Understanding the potential for tsunami generated by earthquakes on the southern Hikurangi subduction interface.
New Zealand Journal of Geology and Geophysics, 59
(1).
pp. 70-85.
DOI 10.1080/00288306.2015.1127825.
, Wang, X. and Reyners, M.
(2012)
Tsunami hazard posed to New Zealand by the Kermadec and southern New Hebrides subduction margins: An assessment based on plate boundary kinematics, interseismic coupling, and historical seismicity.
Pure and Applied Geophysics, 169
(1-2).
pp. 1-36.
DOI 10.1007/s00024-011-0299-x.
, Clark, K. and Mueller, C.
(2018)
The New Zealand Probabilistic Tsunami Hazard Model: Development and implementation of a methodology for estimating tsunami hazard nationwide.
Geological Society, London, Special Publications, 456
(1).
pp. 199-217.
DOI 10.1144/SP456.6.
, Walter, W. R., Wilcock, W. and Vincent, H.
(2020)
New opportunities to study earthquake precursors.
Seismological Research Letters, 91
(5).
pp. 2444-2447.
DOI 10.1785/0220200089.
, Webster, J. M., Cheng, H. and Edwards, R. L.
(2006)
Evidence of Holocene uplift in east New Britain, Papua New Guinea.
Geophysical Research Letters, 33
(18).
pp. 1661-1690.
DOI 10.1785/012014029.
, Howe, B. M.
, Fouch, M. J.
, Angove, M.
, Aucan, J.
, Barnes, C. R.
, Bayliff, N.
, Becker, N. C.
, Carrilho, F.
, Fry, B.
, Janiszewski, H. A.
, Jamelot, A.
, Kong, L. S. L.
, Lenz, S. T.
, Luther, D. S.
, Marinaro, G.
, Matias, L.
, Salaree, A.
, Sakya, A. E.
, Thiele, T.
, Tilmann, F.
, Hildebrandt-Andrade, C. V.
, Wallace, L. M.
, Weinstein, S. A.
and Wilcock, W. S. D.
(2022)
SMART Cables Observing the Oceans and Earth.
Marine Technology Society Journal, 56
(5).
pp. 13-25.
DOI 10.4031/MTSJ.56.5.3.
(2015)
The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes.
Nature Geoscience, 8
(8).
pp. 594-600.
DOI 10.1038/ngeo2490.
, Saffer, D. M., Barnes, P. M., Petronotis, K. E. and LeVay, L. J.
(2021)
Asymmetric Brittle Deformation at the P?paku Fault, Hikurangi Subduction Margin, NZ, IODP Expedition 375.
Geochemistry, Geophysics, Geosystems, 22
(8).
Art.Nr.: e2021GC009662.
DOI 10.1029/2021GC009662.
, Kaneko, Y., Hamling, I., Ito, Y. and Matsuzawa, T.
(2019)
Three-Dimensional Modeling of Spontaneous and Triggered Slow-Slip Events at the Hikurangi Subduction Zone, New Zealand.
Journal of Geophysical Research: Solid Earth, 124
(12).
pp. 13250-13268.
DOI 10.1029/2019JB018190.
and Marone, C.
(2022)
Frictional and Lithological Controls on Shallow Slow Slip at the Northern Hikurangi Margin.
and Williams, C.
(2023)
Ultralow frictional healing explains recurring slow slip events.
Science, 379
(6633).
pp. 712-717.
DOI 10.1126/science.adf4930.
and Buxton, R.
(2011)
Preliminary probabilistic seismic hazard analysis of the co2crc Otway project site, Victoria, Australia.
Bulletin of the Seismological Society of America, 101
(6).
pp. 2726-2736.
DOI 10.1785/0120110049.
, Villamor, P., Langridge, R., Lamarche, G., Nodder, S., Reyners, M., Bradley, B., Rhoades, D., Smith, W., Nicol, A., Pettinga, J., Clark, K. and Jacobs, K.
(2012)
National seismic hazard model for New Zealand: 2010 update.
Bulletin of the Seismological Society of America, 102
(4).
pp. 1514-1542.
DOI 10.1785/0120110170.
, Wu, C. C., Sun, H. and Papabatu, A. K.
(2015)
Variable Holocene deformation above a shallow subduction zone extremely close to the trench.
, Sheehan, A. F., Webb, S. C., Williams, C. A., Nakai, J., Yarce, J., Fry, B., Henrys, S. and Ito, Y.
(2018)
Earthquakes and Tremor Linked to Seamount Subduction During Shallow Slow Slip at the Hikurangi Margin, New Zealand.
Journal of Geophysical Research: Solid Earth, 123
(8).
pp. 6769-6783.
DOI 10.1029/2018JB016136.
, Herwegh, M. and Veveakis, M.
(2024)
Slow Slip Events in New Zealand: Irregular, yet Predictable?.
, Rollins, C., Maurer, J., Gerstenberger, M. C., Williams, C. A., Hamling, I. J., Howell, A. and DiCaprio, C. J.
(2024)
Upper Plate and Subduction Interface Deformation Models in the 2022 Revision of the Aotearoa New Zealand National Seismic Hazard Model.
Bulletin of the Seismological Society of America, 114
(1).
pp. 37-56.
DOI 10.1785/0120230118.
, Leonard, G. S., Langridge, R. M. and Ries, W. F.
(2017)
Rapid Evolution of Subduction-Related Continental Intraarc Rifts: The Taupo Rift, New Zealand.
Tectonics, 36
(10).
pp. 2250-2272.
DOI 10.1002/2017TC004715.
(2020)
Slow Slip Events in New Zealand.
Annual Review of Earth and Planetary Sciences, 48
.
pp. 175-203.
and Beavan, J.
(2010)
Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand.
Journal of Geophysical Research: Solid Earth, 115
(12).
Art.Nr.: B12402.
DOI doi: 10.1029/2010JB007717.
and Beavan, J.
(2006)
A large slow slip event on the central Hikurangi subduction interface beneath the Manawatu region, North Island, New Zealand.
Geophysical Research Letters, 33
(11).
Art.Nr.: L11301.
DOI 10.1029/2006GL026009.
and Eberhart-Phillips, D.
(2013)
Newly observed, deep slow slip events at the central Hikurangi margin, New Zealand: Implications for downdip variability of slow slip and tremor, and relationship to seismic structure.
Geophysical Research Letters, 40
(20).
pp. 5393-5398.
DOI 10.1002/2013GL057682.
, Araki, E., Saffer, D., Wang, X., Roesner, A., Kopf, A., Nakanishi, A., Power, W., Kobayashi, R., Kinoshita, C., Toczko, S., Kimura, T., Machida, Y. and Carr, S.
(2016)
Near-field observations of an offshore Mw 6.0 earthquake from an integrated seafloor and subseafloor monitoring network at the Nankai Trough, southwest Japan.
Journal of Geophysical Research: Solid Earth, 121
(11).
pp. 8338-8351.
DOI 10.1002/2016JB013417.
, Barnes, P., Beavan, J., Van Dissen, R., Litchfield, N., Mountjoy, J., Langridge, R., Lamarche, G. and Pondard, N.
(2012)
The kinematics of a transition from subduction to strike-slip: An example from the central New Zealand plate boundary.
Journal of Geophysical Research: Solid Earth, 117
(2).
Art.Nr.: B02405.
DOI 10.1029/2011JB008640.
, Bartlow, N., Hamling, I. and Fry, B.
(2014)
Quake clamps down on slow slip.
Geophysical Research Letters, 41
(24).
pp. 8840-8846.
DOI 10.1002/2014GL062367.
, Beavan, J., Bannister, S. and Williams, C.
(2012)
Simultaneous long-term and short-term slow slip events at the Hikurangi subduction margin, New Zealand: Implications for processes that control slow slip event occurrence, duration, and migration.
Journal of Geophysical Research: Solid Earth, 117
(11).
Art.Nr.: B11402.
DOI 10.1029/2012JB009489.
, Beavan, J., McCaffrey, R. and Darby, D.
(2004)
Subduction zone coupling and tectonic block rotations in the North Island, New Zealand.
Journal of Geophysical Research: Solid Earth, 109
(12).
pp. 1-21.
DOI 10.1029/2004JB003241.
, Beavan, J., McCaffrey, R., Berryman, K. and Denys, P.
(2007)
Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological datas.
, Bell, R., Townend, J., Ellis, S., Bannister, S., Henrys, S., Sutherland, R. and Barnes, P.
(2010)
Subduction systems revealed: Studies of the hikurangi margin.
Eos, Transactions American Geophysical Union, 91
(45).
pp. 417-418.
DOI 10.1029/2010EO450001.
, Cochran, U. A., Power, W. L. and Clark, K. J.
(2014)
Earthquake and tsunami potential of the Hikurangi subduction thrust, New Zealand: Insights from paleoseismology, GPS, and Tsunami modeling.
, Ellis, S. and Mann, P.
(2009)
Collisional model for rapid fore-arc block rotations, arc curvature, and episodic back-arc rifting in subduction settings.
Geochemistry, Geophysics, Geosystems, 10
(5).
Art.Nr.: Q05001.
DOI 10.1029/2008GC002220.
, Ellis, S., Little, T., Tregoning, P., Palmer, N., Rosa, R., Stanaway, R., Oa, J., Nidkombu, E. and Kwazi, J.
(2014)
Continental breakup and UHP rock exhumation in action: GPS results from the Woodlark Rift, Papua New Guinea.
Geochemistry, Geophysics, Geosystems, 15
(11).
pp. 4267-4290.
DOI 10.1002/2014GC005458.
, Ellis, S., Miyao, K., Miura, S., Beavan, J. and Goto, J.
(2009)
Enigmatic, highly active left-lateral shear zone in southwest Japan explained by aseismic ridge collision.
Geology, 37
(2).
pp. 143-146.
DOI 10.1130/G25221A.1.
, Fagereng, A. and Ellis, S.
(2012)
Upper plate tectonic stress state may influence interseismic coupling on subduction megathrusts.
Geology, 40
(10).
pp. 895-898.
DOI 10.1130/G33373.1.
, Hamling, I., Holden, C., Villamor, P. and Williams, C.
(2016)
Introduction to NZJGG special issue in honour of John Beavan's scientific contributions.
New Zealand Journal of Geology and Geophysics, 59
(1).
pp. 1-4.
DOI 10.1080/00288306.2015.1130729.
, Hreinsdóttir, S., Ellis, S., Hamling, I., D'Anastasio, E. and Denys, P.
(2018)
Triggered Slow Slip and Afterslip on the Southern Hikurangi Subduction Zone Following the Kaikoura Earthquake.
Geophysical Research Letters, 45
(10).
pp. 4710-4718.
DOI doi: 10.1002/2018GL077385.
, Kaneko, Y., Hreinsdóttir, S., Hamling, I., Peng, Z., Bartlow, N., D'Anastasio, E. and Fry, B.
(2017)
Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge.
Nature Geoscience, 10
(10).
pp. 765-770.
DOI 10.1126/science.aam7194.
, McCaffrey, R., Beavan, J. and Ellis, S.
(2005)
Rapid microplate rotations and backarc rifting at the transition between collision and subduction.
Geology, 33
(11).
pp. 857-860.
DOI 10.1130/G21834.1.
, Reyners, M., Cochran, U., Bannister, S., Barnes, P. M., Berryman, K., Downes, G., Eberhart-Phillips, D., Fagereng, A., Ellis, S., Nicol, A., McCaffrey, R., Beavan, R. J., Henrys, S., Sutherland, R., Barker, D. H. N., Litchfield, N., Townend, J., Robinson, R., Bell, R., Wilson, K. and Power, W.
(2009)
Characterizing the seismogenic zone of a major plate boundary subduction thrust: Hikurangi Margin, New Zealand.
Geochemistry, Geophysics, Geosystems, 10
(10).
Art.Nr.: Q10006.
DOI 10.1029/2009GC002610.
, Stevens, C., Silver, E., McCaffrey, R., Loratung, W., Hasiata, S., Stanaway, R., Curley, R., Rosa, R. and Taugaloidi, J.
(2004)
GPS and seismological constraints on active tectonics and arc-continent collision in Papua New Guinea: Implications for mechanics of microplate rotations in a plate boundary zone.
Journal of Geophysical Research: Solid Earth, 109
(5).
Art.Mr.: B05404.
DOI 10.1029/2003JB002481.
, Webb, S. C., Ito, Y., Mochizuki, K., Hino, R., Henrys, S., Schwartz, S. Y. and Sheehan, A. F.
(2016)
Slow slip near the trench at the Hikurangi subduction zone, New Zealand.
Science, 352
(6286).
pp. 701-704.
DOI 10.1126/science.aaf2349.
and Petronotis, K.
(2023)
Compactive deformation of incoming calcareous pelagic sediments, northern Hikurangi subduction margin, New Zealand: Implications for subduction processes.
(2022)
Temporal velocity variations in the northern Hikurangi margin and the relation to slow slip.
Earth and Planetary Science Letters, 584
.
Art.Nr.: 117443.
DOI 10.1016/j.epsl.2022.117443.
, Chon, E., Henrys, S., Sheehan, A., Mochizuki, K., Schwartz, S., Webb, S. and Lebedev, S.
(2019)
Episodic stress and fluid pressure cycling in subducting oceanic crust during slow slip.
Nature Geoscience, 12
(6).
pp. 475-481.
DOI 10.1038/s41561-019-0367-x.
and Ellis, S.
(2018)
How fast can low-angle normal faults slip? Insights from cosmogenic exposure dating of the active Mai'iu fault, Papua New Guinea.
Geology, 46
(3).
pp. 227-230.
DOI 10.1130/G39736.1.
(2009)
Coral reef evolution on rapidly subsiding margins.
Global and Planetary Change, 66
(1-2).
pp. 129-148.
DOI 10.1016/j.gloplacha.2008.07.010.
, Braga, J. C., Silver, E., Applegate, B. and Potts, D.
(2004)
Drowned carbonate platforms in the Huon Gulf, Papua New Guinea.
Geochemistry, Geophysics, Geosystems, 5
(11).
Art.Nr.: Q11008.
DOI 10.1029/2004GC000726.
, Clague, D. A. and Braga, J. C.
(2007)
Numerical modeling of the growth and drowning of Hawaiian coral reefs during the last two glacial cycles (0-250 kyr).
Geochemistry, Geophysics, Geosystems, 8
(3).
Art.Nr.: Q03011.
DOI 10.1029/2006GC001415.
, Silver, E., Potts, D., Braga, J. C., Renema, W., Riker-Coleman, K. and Gallup, C.
(2004)
Coralgal composition of drowned carbonate platforms in the Huon Gulf, Papua New Guinea; Implications for lowstand reef development and drowning.
Marine Geology, 204
(1-2).
pp. 59-89.
DOI 10.1016/S0025-3227(03)00356-6.
(2015)
Effects of material property variations on slip estimates for subduction interface slow-slip events.
Geophysical Research Letters, 42
(4).
pp. 1113-1121.
DOI 10.1002/2014GL062505.
(2018)
The Impact of Realistic Elastic Properties on Inversions of Shallow Subduction Interface Slow Slip Events Using Seafloor Geodetic Data.
Geophysical Research Letters, 45
(15).
pp. 7462-7470.
DOI 10.1029/2018GL078042.
and Melnick, D.
(2022)
The occurrence and hazards of great subduction zone earthquakes.
Nature Reviews Earth & Environment, 3
(2).
pp. 125-140.
DOI 10.1038/s43017-021-00245-w.
, Pank, K., Behrens, E., Greve, A., Bell, R., Cook, A., Petronotis, K., LeVay, L., Jamieson, R. A., Aze, T., Wallace, L.
, Saffer, D. and Pecher, I.
(2024)
Trench floor depositional response to glacio-eustatic changes over the last 45 ka, northern Hikurangi subduction margin, New Zealand.
New Zealand Journal of Geology and Geophysics, 67
(3).
pp. 312-335.
DOI 10.1080/00288306.2022.2099432.
, Williams, C. A., Hamling, I. J., Webb, S. C., Ito, Y., Palmer, N., Hino, R., Suzuki, S., Savage, M. K., Warren-Smith, E. and Mochizuki, K.
(2024)
Spatiotemporal Evolution of Slow Slip Events at the Offshore Hikurangi Subduction Zone in 2019 using GNSS, InSAR, and seafloor geodetic data.
, Ito, Y., Collins, C., Palmer, N., Hino, R., Savage, M. K., Saffer, D. M., Davis, E. E. and Barker, D. H. N.
(2022)
Using Seafloor Geodesy to Detect Vertical Deformation at the Hikurangi Subduction Zone: Insights From Self-Calibrating Pressure Sensors and Ocean General Circulation Models.
, Henrys, S. A., Webb, S. C., Ito, Y., Abercrombie, R. E., Fry, B., Shaddox, H. and Todd, E. K.
(2019)
Seismicity at the Northern Hikurangi Margin, New Zealand, and Investigation of the Potential Spatial and Temporal Relationships With a Shallow Slow Slip Event.
Journal of Geophysical Research: Solid Earth, 124
(5).
pp. 4751-4766.
DOI 10.1029/2018JB017211.
and Williams, C.
(2019)
Time-Dependent Behavior of a Near-Trench Slow-Slip Event at the Hikurangi Subduction Zone.
Geochemistry, Geophysics, Geosystems, 20
(8).
pp. 4292-4304.
DOI 10.1029/2019GC008229.
, Schwartz, S., Webb, S. and Henrys, S.
(2020)
Temporal and spatial variations in seismic anisotropy and VP/VS ratios in a region of slow slip.
Earth and Planetary Science Letters, 532
.
Art.Nr.: 115970.
DOI 10.1016/j.epsl.2019.115970.
Articles in a Scientific Journal - without review
, Elliott, J. and Schwartz, S.
(2021)
Slipping and Locking in Earth’s Earthquake Factories.
Eos, Transactions American Geophysical Union, 102
(4).
pp. 23-27.
DOI 10.1029/2021eo155885.
, Webb, S., Ito, Y., Mochizuki, K., Ichihara, H., Henrys, S., Tréhu, A., Schwartz, S., Sheehan, A., Saffer, D. and Lauer, R.
(2016)
Investigations of shallow slow slip offshore of New Zealand.
(2021)
Editorial: Frontiers in Seafloor Geodesy.
, Barnes, P. M., Pecher, I. A., Petronotis, K. E.
, LeVay, L. J.
, Bell, R. E.
, Crundwell, M. P.
, Engelmann de Oliveira, C. H., Fagereng, A.
, Fulton, P. M., Greve, A.
, Harris, R. N., Hashimoto, Y.
, Hüpers, A., Ikari, M. J.
, Ito, Y.
, Kitajima, H.
, Kutterolf, S.
, Lee, H., Li, X., Luo, M., Malie, P. R., Meneghini, F.
, Morgan, J. K.
, Noda, A.
, Rabinowitz, H. S.
, Savage, H. M.
, Shepherd, C. L.
, Shreedharan, S.
, Solomon, E. A., Underwood, M. B.
, Wang, M.
, Woodhouse, A. D., Bourlange, S. M., Brunet, M. M. Y., Cardona, S., Clennell, M. B., Cook, A. E., Dugan, B.
, Elger, J.
, Gamboa, D., Georgiopoulou, A., Han, S., Heeschen, K. U., Hu, G., Kim, G. Y., Koge, H., Machado, K. S., McNamara, D. D., Moore, G. F.
, Mountjoy, J. J., Nole, M. A.
, Owari, S., Paganoni, M., Rose, P. S., Screaton, E. J.
, Shankar, U., Torres, M. E.
, Wang, X. and Wu, H. Y.
(2019)
Expedition 372B/375 summary.
, Silver, E. A., Bangs, N., Bell, R., Mountjoy, J., Henrys, S. and Pecher, I.
(2012)
IODP workshop on using ocean drilling to unlock the secrets of slow slip events.
, Petronotis, K. E. and Scientists, S.
(2019)
Structural analysis of compactive deformation in the incoming sedimentary section of the Hikurangi Subduction Margin, New Zealand: results from IODP 375 expedition.
Acta Geologica Sinica (English Edition), 93
(S1).
p. 157.
DOI 10.1111/1755-6724.14005.
Book chapters
and Denys, P.
(2007)
Kinematic Constraints from GPS on Oblique Convergence of the Pacific and Australian Plates, Central South Island, New Zealand.
In: A Continental Plate Boundary: Tectonics at South Island, New Zealand.
; 175
.
Geophysical Monograph Series
.
AGU (American Geophysical Union), Wiley, Washington, DC, USA, pp. 75-94.
DOI 10.1029/175GM05.
, Fletcher, H. and Douglas, A.
(2007)
Slow slip events on the hikurangi subduction interface, New Zealand.
In: Dynamic Planet: Monitoring and Understanding a Dynamic Planet with Geodetic and Oceanographic Tools.
; 130
.
International Association of Geodesy Symposia, 130
.
Springer, Heidelberg,Germany, pp. 438-444.
DOI 10.1007/978-3-540-49350-1_64.
, Litchfield, N. J., Beavan, J. and Smith, W. D.
(2009)
Multi-disciplinary probabilistic tectonic hazard analysis.
In: Volcanic and Tectonic Hazard Assessment for Nuclear Facilities.
.
Cambridge University Press, Cambridge, UK, pp. 257-275.
DOI 10.1017/CBO9780511635380.011.
, Little, T. A., Cooper, A. F., Yetton, M. and Stirling, M.
(2013)
Do Great Earthquakes Occur on the Alpine Fault in Central South Island, New Zealand?.
In: A Continental Plate Boundary: Tectonics at South Island, New Zealand.
; 175
.
Geophysical Monograph Series
.
AGU (American Geophysical Union), Wiley, Washington, DC, USA, pp. 235-251.
DOI 10.1029/175GM12.
, Beavan, J., Miura, S. and McCaffrey, R.
(2009)
Using global positioning system data to assess tectonic hazards.
In: Volcanic and Tectonic Hazard Assessment for Nuclear Facilities.
.
Cambridge University Press, Cambridge, UK, pp. 156-175.
DOI 10.1017/CBO9780511635380.007.
and Rollins, C.
(2024)
GNSS observations of transient deformation in plate boundary zones.
In: GNSS Monitoring of the Terrestrial Environment: Earthquakes, Volcanoes and Climate Change.
, ed. by
Aoki, Y. and Kreemer, C..
Elsevier, San Diego, pp. 83-110.
ISBN 978-0-323-95507-2
DOI 10.1016/B978-0-323-95507-2.00009-8.
Conference papers
, Aucan, J.
, Barros, J.
, Bayliff, N.
, Fouch, M.
, Jamelot, A.
, Kong, L.
, Lentz, S.
, Luther, D. S.
, Marinaro, G.
, Matias, L.
, Panayotou, K.
, Rowe, C.
, Sakya, A. E.
, Salaree, A.
, Hillebrandt-Andrade, C. V.
, Wallace, L. M.
and Weinstein, S.
(2021)
SMART Cables Observing the Oceans and Earth.
[Paper]
In: Oceans 2021. , 20.-23.09.2021, San Diego, USA .
DOI 10.23919/OCEANS44145.2021.9705851.
OCEANS 2021: San Diego – Porto, 2021
.
, Litchfield, N., Apted, M. and Cloos, M.
(2006)
Neotectonic considerations for nuclear waste repository site selection in Japan.
[Paper]
In: 11. International High Level Radioactive Waste Management Conference IHLRWM. , 30.04.-04.05.2006, Las Vegas, USA . Proceedings of the 11th International High Level Radioactive Waste Management Conference, IHLRWM. ; pp. 151-153 .
Reports - Cruise Reports
, Lee, H., Li, X., Luo, M., Malie, P. M., Meneghini, F., Morgan, J. M., Noda, A. and Fatouros, T. A.
(2018)
International ocean discovery program expedition 375 preliminary report: Hikurangi subduction margin coring and observatories unlocking the secrets of slow slip through drilling to sample and monitor the forearc and subducting plate, 8 March - 5 May 2018.
Award
Committee
(2024)
American Geophysical Union / Incoming President of the Geodesy section.
2024 - 2025
[Committee]
(2025)
American Geophysical Union / President of the Geodesy section.
2025 - 2026
[Committee]
(2018)
Board of Directors for UNAVCO / Member (Vice-Chair in 2021).
2018 - 2021
[Committee]
Publications (Highlights)
Publications (Google Scholar)
Prof. Laura M. Walalce on Google Scholar
Cited by:
| All | Since 2020 | |
|---|---|---|
| Citations | 10.975 | > 5550 |
| h-index | 51 | 38 |
| i10-index | 126 | 106 |
Awards/honors
2018-present:
Fellow of the Royal Society of New Zealand
2020, 2012 & 2007:
Editor’s citation for excellence in refereeing, Journal of Geophysical Research-Solid Earth
2018:
McKay Hammer Award from the Geoscience Society of New Zealand
2018, 2019, 2016 & 2005:
New Zealand Geophysics Prize (awarded by the Geoscience Society of NZ for best paper on NZ geophysics for the current and/or preceding year)
2015/2016:
Distinguished lecturer for the NSF GeoPRISMS Distinguished Lecturer series
2014 & 2015:
Kavli Foundation Frontiers of Science Fellow
2012:
Editor’s citation for excellence in refereeing, Geophysical Research Letters
Supervised students and scientists
- Elizabeth Meaghan Sherrill (PostDoc, GEOMAR, 2025-present)
- Erik Frederickson (PostDoc, University of Texas, Institute for Geophysics, 2023-present)
- Srisharan Shreedharan (PostDoc, University of Texas, Institute for Geophysics, 2020-2022)
- Lada Dimitrova (PostDoc, University of Texas, Institute for Geophysics, 2012-2016)
- McKenzie Carlson (PhD Student, University of Texas, 2023- present)
- James Biemiller (PhD Student, University of Texas, 2015- present)
- Katherine Woods (PhD Student, Victoria University of Wellington, 2018-2022)
- Nicholas Benz (Bachelor thesis, Univ. Texas, 2013)
- Member of the examination committee for doctoral students at the University of Texas, Alissa Kotowski und Kimberley McCormick.